By Francis Gurtowski

The prolific author is an authentic, ancient coder,
going all the way back to IBM Poughkeepsie (Building 705, no less, second floor)
and the heyday of OS/360,
Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50,
coding pads and the coding-pad veto,
punch cards and keypunch machines,
and self-modifying code.

The widebody-microcode-development process, circa 1977, building 705, first floor, Poughkeepsie, New York.

A model of computing in the UNIX workstation era.

The origin story of the IBM System/360 general registers.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line,
a perfected process for swiftly turning out
a series of ingenious, finished products
in a foolproof, mechanically-efficient manner.

Enter the JavaScript Code-Stylist

The computer ignores so-called "white space" except as the blanks, tabs, newlines, formfeeds, and comments separate tokens.

As a consequence, only the rare coders
- in fact, maybe only the elusive "code poets" -
are fastidious about how they are visually presenting in their code.

The rub is that the worst torture
- akin to water-boarding -
anyone can inflict upon a coder is making him or her review another coder's code.

Such as during the the "code walk-throughs" which are part and parcel of the software development process performed at industrial scale.

The catch is that the code-reviewer is obligated to critically LOOK at the other coder's code for actionable flaws
but the code-reviewer is not permitted to CRITIQUE the other coder's code so as to otherwise improve it,
no matter how aesthetically barbaric the code-reviewer views it.

Do novelists have the same compulsion to rewrite every other novelist's story arcs and prose?

Enter the so-called "code stylist"
- akin to the "food stylist" -
whose calling is to make a dish look irresistably good enough to eat
for the camera.

Code reviews are arguably more effective after a code stylist has dressed up the code and maybe even colorized it.

C and Java are encrypted into 1's and 0's but Javascript abounds in clear text.

Maybe not so much anymore, but way back in 2016 that was true to a certain extent.

Using what is available, Francis Gurtowski tries his hand at code rendering.

He offers sample source code and a corresponding keyword cross reference in separate volumes.

He also offers both either colorized or not.

2,349,648 Quintessential Puzzles by Francis Gurtowski

This is yet another serious, serious series of books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

All 999 of these sequels take full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

This substantial series of weighty books - by Francis Gurtowski and collectively titled Quintessential Puzzles - is true to its quotidian name.

The 2,352 separate and distinct brain-teasers forming each volume - and the total of 2,349,648 specimens of this riddle subspecies which have been collected for your enjoyment and vocabulary development within the entire 999-book Quintessential Puzzles assemblage - are perfect examples of no-frills word-puzzles.

As the fictional Los Angeles police sergeant Friday would say on the classic 1950s whodunit television series Dragnet, "Just the words, ma'am."

A solution to a Quintessential Puzzle is an ordered list of typically ten, eleven, twelve, or thirteen words satisfying certain criteria regarding each individual word's length and letter palette.

Here is an outlying example of a Quintessential Puzzle whose ordered list of six words is much shorter than is usually the case.

The gist of this exception will suffice to demonstrate the anatomy of a Quintessential Puzzle regardless of the number of words involved.

The first word on this prototypical list happens to be specified to be precisely ten letters in length and spelled with at least one instance of each of these eight letters: DEGLORTY - and with absolutely no other letter or combination of letters.

A word such as TROGLODYTE, for example; there may or may not be more than one word that fits the profile.

The second word on this list happens to be specified to be precisely eleven letters in length and spelled with at least one instance of each of these seven letters: AINQSUV - and with zero, one, or more of the letters of the palette prescribed for the first word: DEGLORTY - and with absolutely no other letter or combination of letters.

A word such as EQUIVALENTS, for example.

The third word on this list happens to be specified to be precisely eight letters in length and spelled with at least one instance of each of these three letters: FWZ - and with zero, one, or more of the cumulative letter-palette prescribed for the first two words: ADEGILNOQRSTUVY - and with absolutely no other letter or combination of letters.

A word such as FROWZIER.

The fourth word on this list happens to be specified to be precisely nine letters in length and spelled with at least one instance of each of these three letters: MPX - and with zero, one, or more of the cumulative letter-palette prescribed for the first three words: ADEFGILNOQRSTUVWYZ - and with absolutely no other letter or combination of letters.

A word such as EXAMPLING.

The fifth word on this list happens to be specified to be precisely eight letters in length and spelled with at least one instance of each of these three letters: BCH - and with zero, one, or more of the cumulative letter-palette prescribed for the first four words: ADEFGILMNOPQRSTUVWXYZ - and with absolutely no other letter or combination of letters.

A word such as BECHANCE.

The sixth and final word on this unusual list is also specified to be precisely eight letters in length but spelled with at least one instance of each of these two letters: JK - and with zero, one, or more of the cumulative letter-palette prescribed for the first five words: ABCDEFGHILMNOPQRSTUVWXYZ.

A word such as JOYSTICK.

It does not get any simpler - nor any more difficult - than that.

Each Quintessential Puzzle eventually - sooner or later - employs all twenty-six letters of the alphabet.

In fact, it does not get any more quintessential than that.

ABC001 ABC002 ABC003
ABC004 ABC005 ABC006
ABC007 ABC008 ABC009
ABC010 ABC011 ABC012
ABC013 ABC014 ABC015
ABC016 ABC017 ABC018
ABC019 ABC020 ABC021
ABC022 ABC023 ABC024

293,706 Pair-Off Puzzles by Francis Gurtowski

This is yet another serious, serious series of books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

All 999 of these sequels take full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

Each of the 294 given, riddled Pair-Off Puzzle grids in each book has sixteen rows and six columns and is populated with a different, diversified assortment of exactly ninety-six, dictionary words each from four to eleven letters long.

Each such given ninety-six-word aggregate has undergone a very, very, rigorous selection process.

For starters, no two or more words within the confinement of any given subcollection are identical.

More to the point, each given word within each grouping has a partner tucked away there on the sly.

Unriddle each of the 294 given, riddled Pair-Off Puzzle grids by pairing off the ninety-six given words into forty-eight composite words of your own concoction.

POP001 POP002 POP003
POP004 POP005 POP006
POP007 POP008 POP009
POP010 POP011 POP012
POP013 POP014 POP015
POP016 POP017 POP018
POP019 POP020 POP021
POP022 POP023 POP024

Here Is Baby ... by Francis Gurtowski

This is yet another serious, serious series of books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

Develop your precious young child's budding ability to pick out a familiar textual signal buried amid the studied ambient noise printed in various large Courier fonts on each line of this imposing, 590-page, pre-kindergarten - yea, pre-nursery school! - workbook.

Such alphabetic discernment is, of course, an essential language skill.

Ask any schoolteacher.

More to the point, arguably, the first letter sequence that every child ought to learn to pick out of a confusion of seemingly random letters is that of its own first name.

Start right at the beginning by familiarizing your child with precisely that spelling.

Consider this a treasure trove of letter problems to be solved directly on the pages of this workbook.

In the very beginning you, of course, will have to circle the letters with a pencil or crayon as your child points them out.

Before this book is even halfway filled out, however, your confident child will no doubt insist on grabbing the proverbial reins out of your hands and marking-up the remaining pages unassisted.

So be it.

This snowballing procedure provides a written record of your child's progress in recognizing letter sequences.

These pre-reading-skills exercises are structured into five progressive degrees of difficulty.

Five 108-point Courier letters per line.

Then ten 54-point Courier letters per line.

Then fifteen 36-point Courier letters per line.

Then twenty 27-point Courier letters per line.

Finally twenty-five 21.6-point Courier letters per line.

By the time you and your child finish this massive tome your child will be well-prepared for kindergarten and beyond.

And you will have a family heirloom to not only treasure yourself, but, someday in the not too distant future, to also show your child when your child moves into a college dormitory.

AMY EMA KIM
PEG RON ROY
ALEX TED ANDY
ARLO BERT BRET

Catchword Puzzles ... by Francis Gurtowski

This is yet another serious, serious series of books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

All 999 of these sequels take full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

Introducing the perplexity of CATCHWORD which is to classic wordsearch as CHESS is to checkers.

Classic wordsearch gives you an itemized LIST of what are presumed to be spelled out words.

Your so-called challenge is to locate each of the items expounded CONTIGUOUSLY across, down, and diagonally within a rectangular array of alphabetic letters.

Ho hum.

How utterly boring!

Classic wordsearch is rote pattern recognition.

Why waste your time trying to find some needles in a haystack?

Classic wordsearch does not teach you anything in any way whatsoever.

The so-called words on the list might just as well be GIBBERISH.

Classic wordsearch is hardly cerebral at all.

Catchwork, on the other hand, challenges you to find an UNDISCLOSED word --- or, more likely, and much more PUZZLINGLY, an undisclosed PAIR of words --- VARIOUSLY spelled out DISCONTIGOUSLY across EACH and EVERY 25-letter line of a 7-line block of text.

Catchwork behooves you to keep a dictionary handy as you sublimablely build up your vocabulary.

Catchword 180 Catchword 196 Catchword 198
Catchword 222 Catchword 252 Catchword 256
Catchword 258 Catchword 264 Catchword 265
Catchword 298 Catchword 328 Catchword 332
Catchword 343 Catchword 374 Catchword 377
Catchword 385 Catchword 400 Catchword 417
Catchword 419 Catchword 439 Catchword 453
Catchword 472 Catchword 497 Catchword 498

Joinword Puzzles by Francis Gurtowski

Take a once-a-day, sanity break
by enjoying these harmless, bite-sized fusions
of crossword & anagram puzzles.

293,706 Loch Ness Puzzles by Francis Gurtowski

This is yet another serious, serious series of books authored by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

All 999 of these sequels take full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

Each Loch Ness Puzzle is an aggrandized restatement of the popular solitaire version of the classic paper-and-pencil game of Battleships.

Each rectangular Loch Ness Puzzle grid represents a fleeting sonar image of the presence or not of the marine life - fabled and otherwise - native to Loch Ness in northwest Scotland.

The numerous unremarkable aquatic inhabitants consist of any number of specifically fish specimens anywhere from one to five grid-cells in length.

On the other hand, the Loch Ness Monsters, while they are so few in number that they effortlessly make themselves scarce, are individually each more substantial than any one of the fish found there.

The Loch Ness Monsters are up to an astounding dozen grid-cells in length and more!

Be aware that the diverse menagerie of Loch Ness dwellers may be oriented either horizontally or vertically.

Moreover, no two inhabitants of Loch Ness can occupy the same nor adjacent grid-cells, not even diagonally i.e. catercornered.

Furthermore, the digit or digits along two of the four sides of each grid respectively provide the number of grid-cells in the corresponding row or column, as the case may be, that DO NOT indicate the presence of a fish or a Loch Ness Monster.

Finally, the cumulative graphical results after some fifty percent of the possible probes have been exercised are shown to you right off the bat to start you off in good stead already halfway to your finish line.

These gratis revelations may alternatively disclose nothingness (indicated in gray).

Or the presence of a single-cell guppy (a black circle).

Or the presence of a head or tail of a fish or monster (a black, rounded-off square).

Or the presence of a midsection of a fish or monster (a black square).

One of the compelling challenges is for you to find every instance of the aquatic wildlife in as few additional probes - of your own volition - as possible.

But the overarching goal is to find the longest Loch Ness Monster in each book of a total of 294 Loch Ness Puzzles.

Each book consists of forty-two 39x27-cell Loch Ness Puzzles.

Plus forty-two additional 46x32-cell Loch Ness Puzzles.

Plus forty-two additional 53x37-cell Loch Ness Puzzles.

Plus forty-two additional 60x42-cell Loch Ness Puzzles.

Plus forty-two additional 67x47-cell Loch Ness Puzzles.

Plus forty-two additional 74x52-cell Loch Ness Puzzles.

Plus forty-two additional 80x57-cell Loch Ness Puzzles.

LNP01 LNP02 LNP03
LNP04 LNP05 LNP06
LNP07 LNP08 LNP09
LNP10 LNP11 LNP12
LNP13 LNP14 LNP15
LNP16 LNP17 LNP18
LNP19 LNP20 LNP21
LNP22 LNP23 LNP24

293,706 Black Diamond Puzzles by Francis Gurtowski

This is yet another serious, serious series of books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

All 999 of these sequels take full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

Given a 7-row by 5-column grid prefilled with a total of 35 arbitrary integers, arrange 0, 1, 2, ... 139 in a 14-row by 10-column second grid such that the sum of the four numbers which you placed in each spatially corresponding composition of four cells in the 14x10 grid matches the value given in the 7x5 grid.

Given a 14-row by 10-column grid prefilled with a total of 140 arbitrary integers, arrange 0, 1, 2, ... 559 in a 28-row by 20-column second grid such that the sum of the four numbers which you placed in each spatially corresponding composition of four cells in the 28x20 grid matches the value given in the 14x10 grid.

Given a 28-row by 20-column grid prefilled with a total of 560 arbitrary integers, arrange 0, 1, 2, ... 2,239 in a 56-row by 40-column second grid such that the sum of the four numbers which you placed in each spatially corresponding composition of four cells in the 56x40 grid matches the value given in the 28x20 grid.

Each of the 294 puzzles in each of the 999 books in this audacious series created by Francis Gurtowski is a separate entity.

BDP01 BDP02 BDP03
BDP04 BDP05 BDP06
BDP07 BDP08 BDP09
BDP10 BDP11 BDP12
BDP13 BDP14 BDP15
BDP16 BDP17 BDP18
BDP19 BDP20 BDP21
BDP22 BDP23 BDP24

293,706 Super 52-Skiddoo Puzzles by Francis Gurtowski

This is yet another serious, serious series of books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

All 999 of these sequels take full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

Spell 26 hidden words: separate substance from obfuscation.

There is one place for each letter of the alphabet in the twenty-six empty positions of each of the two redacted columns of each of the 294 puzzles in each of the 999 books in this audacious series created by Francis Gurtowski.

Each puzzle is a separate entity.

Fill in each pair of missing letters so that a word is formed reading backwards, not forwards.

There is chaff along with the five-or-more-letter word on each 25-position row.

Not all of the letters to the left of the first empty position are used to spell out the pertinent word. Ditto for the letters to the right of the second empty.

SSD01 SSD02 SSD03
SSD04 SSD05 SSD06
SSD07 SSD08 SSD09
SSD10 SSD11 SSD12
SSD13 SSD14 SSD15
SSD16 SSD17 SSD18
SSD19 SSD20 SSD21
SSD22 SSD23 SSD24

Dots & Boxes Endgames by Francis Gurtowski

This is yet another serious, serious series of books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

This wide-ranging series of fourteen grid-packed workbooks revives dormant childhood enthusiasms for the absorbing dots-and-boxes game.

All fourteen of these sequels take full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

These massive collections of lattices enable jaundiced former players like you and me to skip the increasingly onerous foreplay of the challenging leisure-time activity and immediately cut to the chase.

These revolutionary, one-time pads consist of the most cogent dots-and-boxes, ready-made configurations.

Each bound volume in the sequence in turn contains more and more complicated - and more and more carefully calculated by way of my number-crunching algorithm - partially stroked dots-and-boxes setups.

Each setup has been set up for you to complete wherein each of the constituent interstices has been teed up but not quite boxed in.

It took a lot of code for me to accomplish this amazing hack.

But I was determined to create this time-saving literary staircase.

I have grown to loathe mindlessly hand-plotting myriad dots in the same old pattern for what seemed like the millionth time.

I furthermore found myself abhorring the tedious stroke-by-stroke buildup to the commencement of the gist of the dots-and-boxes game.

The more rows and columns a dots-and-boxes grid has the better, I suppose.

But the nasty corollary to that hasty assertion is that grid growth becomes more and more of a impediment when laying out the vertices dot-by-dot by hand.

While there are online sources of preprinted/print-yourself dots-and-boxes templates, those unimaginative bare-bones rote dot patterns pale in comparison to the value-added lattices in this book series which consists of instant dots-and-boxes situations analogous to Laszlo Polgar's classic book of chess endgame problems.

Chess, on the one hand, and dots-and-boxes, on the other, have comparable long-drawn-out opening sequences which only eventually climax in comparable "check states."

Unfortunately, over time both over-studied prelims have calcified into timeworn call-and-response rituals akin to military cadences.

Of course, "check" is the state in which a chess king is exposed to attack from which the premier chess piece must be protected or moved to safety.

The dots-and-boxes sense of that phenomenon arises whenever the very next stroke wherever will tee up the next player to box in an interstice or even a chain of them.

Discover the startling aesthetics of the selectively-stroked patterns that emerge as book by book in this series the densities of the underlying infrastructure increase in leaps and bounds.

As gamers go, we aficionados of the "dots-and-boxes game" are remarkably flexible.

Unlike chess/checkers players or Scrabble players, who are invested in standard grid dimensions e.g. 8x8, 15x15.

The precise number of rows of boxes forming the box-game grid does not matter to us.

Although, the more the better.

Nor the precise number of columns of boxes.

Ditto.

We only insist that the boxes be squares.

During the preparation of this book series I have consequently so far limited myself to a certain ratio of rows to columns.

The "golden ratio" in this case happens to be 7/5 or 1.4.

7x5, 14x10, 21x15, 28x20, 35x25, 42x30, 49x35, 56x40, 63x45, 70x50, 77x55, 84x60, 91x65,

and 98x70.

The respective edge lengths range from 1.5 to 0.1071143 inches.

Prepare to sharpen your pencils!

DBP01 DBP02 BDP03
BDP04 BDP05 BDP06
BDP07 BDP08 BDP09
BDP10 BDP11 BDP12
BDP13 BDP14

293,706 Oxeye Prepper Puzzles by Francis Gurtowski

Puzzle 1 of Book 1
 Vowels  Consonants Words
A . . O . . A . Y . C C . M . . N Y A C C O M P A N Y
. A . . . Y S . W F L . S A W F L Y
. U E . H . . D H U E D
. A . I E . Y V . R . . T . V A R I E T Y
. E . O. K . B . B K E B O B
A . U A . Q . . A Q U A
. A . . J . Z Z J A Z Z
O . E E . G . . O G E E
O . E Y E . X . . . O X E Y E
Given Asked Solved
This is a serious, serious series of 999 books.

Each sequel has 590 bound-and-paperbacked pages
packed with 294 vocabulary-challenging, word puzzles.

Each puzzle is a stack of 6-14 words 4-15 letters long.
Both an overall schematic and redacted spellings are provided.

The nub and the rub of it? You have to complete the 6-14 riddles.

Each word has 1-6 distinct vowels (i.e. AEIOU and Y).
Each word has 1-10 distinct consonants too.

The vowels are laid out in their precise order of succession.
The consonants are missing in place.

Every consonant is used somewhere in each puzzle.
Each consonant is restricted to a single word per puzzle.

The 20 consonants & the 6-14 words correspond many-to-one.

...

Puzzle 294 of Book 999
  Vowels   Consonants Words
O . . I . . A . O . Y . S C . L L . T . R . O S C I L L A T O R Y
. O . Y B . N . B O N Y
. A . . E . Z . G G . D Z A G G E D
. E . . Y P . P P . P E P P Y
. A U . F . . X F A U X
. O . E Y H . K . . H O K E Y
. I . E M . M . M I M E
. O I E J . . . J O I E
. I . O V . V . V I V O
A . U A . Q . . A Q U A
A . A Y . W . . A W A Y
Given Asked Solved

Oxeye Prepper Puzzles is pleasant peacetime playtime pastime family entertainment.

Oxeye Prepper Puzzles is also a clinical antidote to bunker boredom.

Thus the prepper appellation, as in emergency preparedness.

Each volume weighs in at some four pounds apiece.

This prodigious weightiness will serve you well when push comes to shove.

Oxeye Prepper Puzzles will come in handy for self-defense as well as for bartering.

OXEYE001 OXEYE009 OXEYE017
OXEYE002 OXEYE010 OXEYE018
OXEYE003 OXEYE011 OXEYE019
OXEYE004 OXEYE012 OXEYE020
OXEYE005 OXEYE013 OXEYE021
OXEYE006 OXEYE014 OXEYE022
OXEYE007 OXEYE015 OXEYE023
OXEYE008 OXEYE016 OXEYE024

Anatomy of the first ten Oxeye Prepper Puzzles

OxeyeRiddle 1234567891011
1
A C C O M P A N Y
S A W F L Y
H U E D
V A R I E T Y
K E B O B
A Q U A
J A Z Z
O G E E
O X E Y E
  
A . . O . . A . Y
. A . . . Y
. U E .
. A . I E . Y
. E . O .
A . U A
. A . .
O . E E
O . E Y E
  
. C C . M P . N .
S . W F L .
H . . D
V . R . . T .
K . B . B
. Q . .
J . Z Z
. G . .
. X . . .
  
C M P N
S W F L
H D
V R T
K B
Q
J Z
G
X
  
4
4
2
3
2
1
2
1
1
  
2
E U K A R Y O T E
M A D C A P
L U L L
B U N G
F E E S
H I V E
A W A Y
J A Z Z
Q U O I
O X E Y E
 
E U . A . Y O . E
. A . . A .
. U . .
. U . .
. E E .
. I . E
A . A Y
. A . .
. U O I
O . E Y E
 
. . K . R . . T .
M . D C . P
L . L L
B . N G
F . . S
H . V .
. W . .
J . Z Z
Q . . .
. X . . .
 
K R T
M D C P
L
B N G
F S
H V
W
J Z
Q
X
 
3
4
1
3
2
2
1
2
1
1
 
3
D E C O R T I C A T I N G
H I S S
F L O E
A W O K E
O B O E
E P O P E E
J I V E
M O U E
Q U E U E
O O Z Y
O X E Y E
. E . O . . I . A . I . .
. I . .
. . O E
A . O . E
O . O E
E . O . E E
. I . E
. O U E
. U E U E
O O . Y
O . E Y E
D . C . R T . C . T . N G
H . S S
F L . .
. W . K .
. B . .
. P . P . .
J . V .
M . . .
Q . . . .
. . Z .
. X . . .
D C R T N G
H S
F L
W K
B
P
J V
M
Q
Z
X
6
2
2
2
1
1
2
1
1
1
1
4
E Q U A T I N G
I M P A I R E R S
D O Z I L Y
C H I V V Y
K A Y A K
O B O E
W A X Y
F I F E
J U J U
  
E . U A . I . .
I . . A I . E . .
. O . I . Y
. . I . . Y
. A Y A .
O . O E
. A . Y
. I . E
. U . U
  
. Q . . T . N G
. M P . . R . R S
D . Z . L .
C H . V V .
K . . . K
. B . .
W . X .
F . F .
J . J .
  
Q T N G
M P R S
D Z L
C H V
K
B
W X
F
J
  
4
4
3
3
1
1
2
1
1
  
5
A N E S T H E T I C A L L Y
O X I D I Z E D
B O Y A R
M O P E
W I G W A G
J O K E
Q U O I
I F F Y
V I V O
  
A . E . . . E . I . A . . Y
O . I . I . E .
. O Y A .
. O . E
. I . . A .
. O . E
. U O I
I . . Y
. I . O
  
. N . S T H . T . C . L L .
. X . D . Z . D
B . . . R
M . P .
W . G W . G
J . K .
Q . . .
. F F .
V . V .
  
N S T H C L
X D Z
B R
M P
W G
J K
Q
F
V
  
6
3
2
2
2
2
1
1
1
  
6
G R U B B I N E S S
V O L E
D U C A T
H I P P O
F I F E
M A M M Y
Q U I Z
W A X Y
K A Y O
J U J U
 
. . U . . I . E . .
. O . E
. U . A .
. I . . O
. I . E
. A . . Y
. U I .
. A . Y
. A Y O
. U . U
 
G R . B B . N . S S
V . L .
D . C . T
H . P P .
F . F .
M . M M .
Q . . Z
W . X .
K . . .
J . J .
 
G R B N S
V L
D C T
H P
F
M
Q Z
W X
K
J
 
5
2
3
2
1
1
2
2
1
1
 
7
C A N T O N S
A F A R
H O O K U P
J U M B O
G O L L Y W O G
A I D E
V I V O
O Y E Z
Q U O I
O X E Y E
 
. A . . O . .
A . A .
. O O . U .
. U . . O
. O . . Y . O .
A I . E
. I . O
O Y E .
. U O I
O . E Y E
 
C . N T . N S
. F . R
H . . K . P
J . M B .
G . L L . W . G
. . D .
V . V .
. . . Z
Q . . .
. X . . .
 
C N T S
F R
H K P
J M B
G L W
D
V
Z
Q
X
 
4
2
3
3
3
1
1
1
1
1
 
8
A N O M A L O U S N E S S
P R I V A T I V E
E K E D
J U J U
W H E E Z Y
B O B B Y
E X E C
Q U A F F
A G O G
  
A . O . A . O U . . E . .
. . I . A . I . E
E . E .
. U . U
. . E E . Y
. O . . Y
E . E .
. U A . .
A . O .
  
. N . M . L . . S N . S S
P R . V . T . V .
. K . D
J . J .
W H . . Z .
B . B B .
. X . C
Q . . F F
. G . G
  
N M L S
P R V T
K D
J
W H Z
B
X C
Q F
G
  
4
4
2
1
3
1
2
2
1
  
9
C O L D H E A R T E D
J A G G I N G
P O P S
O O Z E
M O V E
B E A K
Q U O I
W A I F
O X E Y E
  
. O . . . E A . . E .
. A . . I . .
. O . .
O O . E
. O . E
. E A .
. U O I
. A I .
O . E Y E
  
C . L D H . . R T . D
J . G G . N G
P . P S
. . Z .
M . V .
B . . K
Q . . .
W . . F
. X . . .
  
C L D H R T
J G N
P S
Z
M V
B K
Q
W F
X
  
6
3
2
1
2
2
1
2
1
  
10
T H E F T
L E G G I E R
N U D E N E S S
Z A P P Y
C U B I C
M A M M Y
J O K E Y
A Q U A
V I E W
O X E Y E
 
. . E . .
. E . . I E .
. U . E . E . .
. A . . Y
. U . I .
. A . . Y
. O . E Y
A . U A
. I E .
O . E Y E
 
T H . F T
L . G G . . R
N . D . N . S S
Z . P P .
C . B . C
M . M M .
J . K . .
. Q . .
V . . W
. X . . .
 
T H F
L G R
N D S
Z P
C B
M
J K
Q
V W
X
 
3
3
3
2
2
1
2
1
2
1
 

293,706 Genius Puzzles

Here are those very same, first ten Oxeye Prepper Puzzles
though now they have been adapted to better suit
the special needs of persons diagnosed with high IQ.

C M P N S W F L H D V R T K B Q J Z G X
K R T M D C P L B N G F S H V W J Z Q X
D C R T N G H S F L W K B P J V M Q Z X
Q T N G M P R S D Z L C H V K B W X F J
N S T H C L X D Z B R M P W G J K Q F V
G R B N S V L D C T H P F M Q Z W X K J
C N T S F R H K P J M B G L W D V Z Q X
N M L S P R V T K D J W H Z B X C Q F G
C L D H R T J G N P S Z M V B K Q W F X
T H F L G R N D S Z P C B M J K Q V W X

Each genius puzzle is simply a 20-letter permutation.

You are asked to find the corresponding stack of 6-14 words 4-15 letters long.

Neither an overall schematic nor redacted spellings are given.

Each word has 1-6 distinct vowels (i.e. AEIOU and Y).
Each word has 1-10 distinct consonants too.

Every consonant is used somewhere in each puzzle.
Each consonant is restricted to a single word per puzzle.

20 consonants & 6-14 words correspond many-to-one.

293,706 Homophonic Prepper-Checksums-Puzzles by Francis Gurtowski

This is yet another serious, serious series of 999 books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

Once again, each of these sequels takes full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

Whereas the book series cited above is packed with 294 two-page, word puzzles, this one is instead chock-full of 147 four-page, letter-substitution specimens of ciphertext-cum-plaintext.

The concept is simple enough.

Each puzzle consists of a 45x90-letter rectangular block of alphabetic text which you have to translate into a 45x90-digit block of decimal text.

Replace each letter A-Z with a digit 1-9.

The plaintext is by definition homophonically encoded in the ciphertext.

Homophonic?

Homophonic refers to the fact that each decimal digit in the plaintext is alternatively represented by more than one ciphertext alphabetical letter.

Moreover, this is a uniquely mathematical, letter-substitution, cipher system.

Whereas letter-substitution schemes have heretofore have been exclusively non-mathematical in nature.

Moreover, the mathematical aspects of the plaintext go far beyond the mere replacement of each letter A-Z in the ciphertext with a decimal digit 1-9 in the plaintext.

To begin with, each row of 90 decimal digits must add up to the same sum whatever.

Spoiler alert!

Regarding the puzzle specimen elucidated below, the common linear checksum just happens to be 449.

In theory, given the common linear checksum, it may be possible for you to find A-Z analytically rather than by trial and error.

The other mathematical constraint is that each of the succeeding columnar sums (i.e. each of the succeeding checksums) must be equal to or greater than (i.e. ≥) its immediate predecessor.

In the books themselves, the required changes (or not) in the sum of the digits in the succeeding columns are designated graphically.

Regarding the puzzle specimen elucidated below, the required columnar increments (or not) are instead designated in absolute terms:

+2, 0, 1, 2, 0, 3, 2, 0, 2, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 2, 4, 1, 2, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 2, 1, 0, 2, 0, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 0, 3, 2, 1, 3, and 7.

Spoiler alert!

The first columnar checksum just happens to be 191.

Ergo, the succeeding 89 checksums are:

193, 193, 194, 196, 196, 199, 201, 201, 203, 203, 204, 204, 205, 206, 206, 207, 207, 208, 208, 208, 210, 210, 210, 211, 211, 211, 212, 213, 213, 214, 215, 215, 216, 216, 216, 216, 217, 218, 218, 219, 219, 219, 221, 225, 226, 228, 228, 228, 229, 229, 229, 229, 230, 231, 231, 232, 232, 233, 233, 233, 233, 233, 234, 236, 236, 236, 236, 236, 238, 239, 239, 241, 241, 242, 244, 245, 246, 247, 248, 249, 251, 252, 255, 255, 258, 260, 261, 264, and 271.

Checksums 001 Checksums 013
Checksums 002 Checksums 014
Checksums 003 Checksums 015
Checksums 004 Checksums 016
Checksums 005 Checksums 017
Checksums 006 Checksums 018
Checksums 007 Checksums 019
Checksums 008 Checksums 020
Checksums 009 Checksums 021 /td>
Checksums 010 Checksums 022
Checksums 011 Checksums 023
Checksums 012 Checksums 024

A Specimen Of The Ciphertext

ZDWETLOYKDARGSSTEZTSLFKDMEDUGVXIERDUPMJUVZJCONLGOMBYYXTFVEZMNRMQPQSTSWKGAOELYJGXEOBBBIFPKB
WTZBVNFODWYVEVSVBTREZTKGEJEEEESTEKARCCQBSIMLIETWGOTDPURWGQWWBLVCBSSHRVHRIJDHIBBESWEFEPEFWS
IEDQJQNVVXBVTRTOWVXTHHMUYGXTIWZRVFQIVAEWDIXPCGEADGSEWYYPEIEVNVBRVAPZLEVRMPTZBJQRKHZZNZARSA
VGCNCILYEESWDBTSHDXUQYAJTKGUVCECENLWUREKKRPUNKNSLENFRMBVYSSVELYPKXFHHMIODPFTBTQVYVZJBEZZBZ
OXHXTVSFMHKEPXBVCLCTVDXSPCPHRWQIREPDBEFGFCEIFNVNDVBHVGVDKXLGIBYIQSNVIOFTNZGFMJLNRRBLNQKQCZ
LTUJBDELXPKYKTHEUNTNBJDASMEWANZEIIJUFESEZCESKYJMKKLPYFNVNTWYLUUJFMPKCORSYBRDVQZESRKQOLXXIP
SEOSKVGYEOGECGHQIVZGMCSEBETLVVCFLOXWVGEPSMRMPKRIRIAUGPVVXBBSJXQRONESWBDEQZCUIRTBPCWSABFUAS
DDCNYRHLPIMVRKHTGQQUTVQCCNSYELLMFOZELKZJKONEWLTNXMJVEGESZAWKWIBUGWJOPFJMELHJXZQRIXFAZZYPNS
TEGHQMZHFJWGVEZVNLHKRVZOWUUPKMOXYPPOWDCGVJWUDMPMXVFQZERMQKQUBAEYQLMIERYEWUZSRWDLNRUJQVIHGV
PEESLMDDDBXYVSQETFGZYNSVVYBZUUVJIXLOZAYXFVVKUOCPMNZESHMKBRIMEKENEZSRMNNRPQELLEFBNPUJBFEYJR
KJEUGLVVCCTWGEEDDUHLOVVJNDUYXQVSRJQAFUBCUKHXCDBYIZLSKEHIHSJZGPNIIIPGYDEEYEZZXXUQIUOSQVSBQP
LONJUQDQJPLJVTGZVOEKEOXHFMCIDPSOYVMWVYUSEAVWFVWOYLZCRESHWUYSGJAXPPRRQUAREFHMXNRQZIVYRGHDZA
MHEVLYWBFODXCSKMAPSZXEGCBIRVPSWVKIKVENWVWVZTUZKJGVYVMILLEKDYETBHFPOGSQGIFTBTKINFXHVWBVEGRM
VMXMEXRROMGNJOTUJMOOCOTKYIWITEUZNWLOUJTMWZQRSUKNIUOKXSDQIHFALCJFLWSPEKFVFLSZDNMTYKMIEBKAWI
IECCVIPXHHLEFEWNPBGOVLMMULASRIJCXUWCYNMGSVEODFJIKLXVWSGSAVQFXJRIZROQKWZERZNAUZWJCREQLRLHZO
HLEHBEQGEVNPHLXIUDXWEEGMNBFQNUHMCTPQYEKMNIYJHVZGHIMIVNZIBUEGWIDEEEJUUVTMJEDQRWNGNKBAUFIAGK
NVIWRYEGOBHWBWKEOSVQXFXEPECONAWKVVOSJIMRPJCWWWFDFKNEDYZEVFOQEXDSISEZDYUVADFBOVXNZIRMQKUGDH
CEEVVGFDZZENJBSMSDKPTMLSVZZXXTMBJPUEFLEXRNXXHXPFRVENEVPYAJHBBVBSEJARPDDYIQBBNZUSPYVLZYZANL
ERMVYPKZBDXXUVYVVWTPFICFDEEVNGDPPMQSCFWTOZOFCKPHXIVFVVYRHIETWZVUVVTWFXUQDBFQHRGEYGINEIIFVX
VUONSCKIESBROHWRLQJSMWTBTEUVWYSDCPEAPDUAAECVZGZZJECEUVHFKJYREWEUURKZDXGLOTVPHOWOLSYBSKWWBN
TOBVLVLAICUPICEUSNSEZBWWMIATPEAXOVEAURYNUIRQPEQZTEBLKUBMIBSWSJPVTQEVUYSBZKEXMMBVCJRWXSREFQ
SODPLIVOAQGVIUJNDRQAAMNJEEZOOEMISNMUVBKVLSSYEIYFEOSADXEWVAYBWVBSJKWCVXTWVXDRPRUWOBYFBHPIBJ
LOEVEZZMAABOOFDWSHHFKRUAXFEBGCNXVUEMCBXGEHXRYZEITKEVHIVGCSEKOCZIVRGEZPHISJAQGTLUFSUSZHQZSA
VFGVTENVLHURXVFEGNYNFLEVLSUNVJNJHJGVFXRYCKHKTBOGSSGTDOFODEGFLLZXPBDCIRIUINFUDVTFYNDQPUYVAN
CTLVGWKAZAYSEWORNAYELDHFLCCLQBXYOVHYQERIKSXFEUIVHACHFPWBOJQNINQOKHEKLFPGEFCQSGVKWHEUVTGBKI
UNCELJDCISJSXGMGYKXVQNJXEFSEDWPJVVJAFMZHEVYPPGBEERSSAHXWGORKPLKYPCFZSEVGRBWXKUZSQEEQZFIXYW
VIICEEGEADVDXNJYWUXVUYRTCMAGICKFHLNDEDKVWPHIFAEIKQGBWNQPTVNEGUSYFPXEFZAJTMKIWTGYPOWMGNYSVU
NUBLGYAZUVPLJECGXGQKXOIKGVHTXGWWFAGVVLLJFRDNJEBMLNAOUQZASLHZGNZVCJKVNTRFFAMTQOBSYDFXOUJLHY
RARHGELVVHCRKKJOKHDEETCCQIAEKMOEABICFPAQYFQIMAVAXQBGQVESYFHPOLZZHJTXUSIHKJWHGHBBEHUBGADYGS
ERLKHVKTGJPOQECHLQJKHYETTDNLNDBGFJACCWVGLGDKHWGVHBNINQPWWVOVGBQKSZLMRSJATEFIEWJILMHZUBEBUZ
MLWUZXSDREDEFBKVAVZWUSAUDGGPGPVUPHORBVNFVCUEXLMIWANFLHXVZDMAVHACUVBSUBLVNWCDZRSYEUKPKIQVBB
NQWBQAKEOOVJDQKXSOVIUBRAZDELHWLIUZPUJHJBLAKXEOROUAQOXHTESWSUWBKYDCECTKUMNILGPFQZCBENNABAVG
NFVVTOAEZGZACTCSMDWOLAAFSFEYCTDCQCBWAFETOMPEQKWLNRQGKNIZGXVMFLKDIAIPAANNYKSGWTWNGLNSWLSBMQ
FOHVQEJYQXMZEWZAEWPEDEYEGSIDCRILNUBVYDWEBSSMXREVIPQRXIHYSMSACGNKOARMLVIPVMCDBAVNNOMZBHHBYR
JDCWFKXREWDTSKVIMJUVBIFZSLHMEQUZOQHQPZDETSSQCLVHXVYWQCLMLYDWUGTJFOZEEFGBYFEGJWQWAWDREAFBBM
VQAHHTVVCVTXXAXFNEHVZSHBCCOONBXLMEQHNLKAFHNBUVJQWPXBTIADGZJWJRVCLXFYQSJFNNIABZKBWBBJNAUQKZ
EFJRODEHIBAHMKAISLJPCUBFQYZGHDFDXXQLNLRCCVHVEAFXHWEFFJVRHHNXSIUVBEWNPOKSLTPIONRCMSKCOPZDQY
VTSWEDMOUDMQEXRQOCSERJKUAFPYKFLWXHNBEFCNWORDDXHVNGWUPZJFSRHTAFVJVVYGPGTUKEZVVIQYGUIEHNFIQJ
EUQYSBLKKGVQGUSMCNMAPGUHTEMCFRDMLWLKVVXVBEWKPJULRZYKMVTVEBMODYCQHIKOGAICWRBKIWYDTOIHPRVIWI
GEQQVEXQCJVVZXVLGQFEWWNPZKEUUTEPBFKWOJSYDXIERKHLIZGZWYSMKDADBPSOYAPVKIXFJNLKEVVVFGFVSXYFIK
KJVAMUVMVEXABIZKNNSBVOQQATOEHHACBPNWWDHLUCKRNIXKVMUHQUKJVSGKWTWKTIWBXGLYGEQNNGVYUZJPBHTDHI
RUMNLWWLMGYDBVLBOJESIXKZVCAHXQGGZVMIVBOULMOLEICFEPVCYZHYUWHOMVIBBINKNGVETYZMSESPHVOPKNPCQP
FUYHESDTXAECGAVCTETUMASMFSEOSXGEQNOXSUFBSSYYZUQHUGRAQLRDNGNUHAEOWZFBNAKRJBHGMCBVUQWTDDTNZX
EZQSKPIDSNAWHKXHCARAQVXZWTDSOLYLCAXHENWQVRYCWFJDZAVBIKNBQPBMVUQEOKTSWFTFNUGNUJQKKMPIDOECEF
RSCJHVEWTMHSCNPAQQLQAQVEHYFKWPRTORSBLSAPCPOGBMSEYRTXRSREUCXOPWVLDNMZLQSUHIPUBBVSXFPULRNMMT
 
+20120320201011010100200100110110100011010024120010001101010000120000210201211111213032137

The Corresponding Specimen Of The Plaintext

937133485348766319363853213671291836724619424637429882381192682575636757441384721499998759
739916843781116193819357141111631548225969239137743376877577931296658158943599916718171876
913545611291383471235526872397981859141739272714376178871911619814793118273994585599694864
172629381167393653265844357612121637681558766566316882918661138752855294378393518194919999
425231682551729123231326727587598173918782198616319517135237998956619483697824368893655529
336493132758535166369434621746919946816192165842553788616378366482752486898315916855432297
614651781471275591972261913311283427171762827589894677112996425846167931592698397276498646
332688537921855375563152266813328491359454617336224117169475799677447842135429589284998766
317552958477119163558194766752428774732714763272218591825556941853291881769687336864519571
711632333928165138798661189966149234948281156427269165259892151619682668751331896764981848
541673112237711336534114636825168454869265522398993651595649776999778311819922659646516957
346465354734137914151425822937648127186614178174839281657686744277885648185226859918875394
251138798432265247692172998176715951167171936954718129331538139587476579839359682517911782
122212884276443642442435897931696734643279586656964526359584324837671581836936238529195479
912219725531817679741322634689422672862761143849532176764158248998455791896469742815383594
531591571167532963271172698566522375815269845197592916999617793111466132413587676594689475
619788174957975146152821712464751146492874277783856138911845123696193861438941269982556735
211117839916496263573236199223294761831286225278811611784459919614487338959969667813989463
182187599322618117378928311167377256287349482575291811885913791611378265398558718796199812
164662591698457835462739316178632714736441219799412161585488171668593273431754743689657796
349131349267921666619977294371424114688669857159319356929967647135116869951222912487268185
643739144571964638544264119441296626195136681988146432171489719645721237123878674988957994
341119924494483765585864281972621612292715288919351159172615429918719759644573368666955964
187131613568218176868311366614645471828825553947667334843178339279329896968631388635768146
233177549486174864813358322359284158518956281691542587794456965455153877182567157516137959
662134329646272785215642186137741144829511877791186645277485735872896117897256965115989287
199211714313264876216883224792585363135177598419557976573161766887218944325973787472768616
669378496173412727552495715327778471133488364192364465946359769124516388842354968382464358
848571311528554455311322594152414992874588592414259751168857439954326695547575991569743876
183551537474512535455813336363978442271737355771596965777141795569328644318917493259691969
237692638131895141976646377777167548916812612329746835219324154261966931672398681657595199
657954514414355264196984931357396976454934521484645425316766795832123562693778592916649417
681134419794232623743448681823325297481342715573685756997212835394974466856773767366736925
845151485229179417713181769328936691837196622811975829586264276544823197122394166429955988
432785281733651924619989635215694555793136652315218752323837673484911879881747574738148992
154553112132242861519659224469232155635485696145772939437947481232885648669499597994646559
184843159945254963472698589753832253638221511482571884185562696191767456337946822652479358
136713246325128542618456487858372569182674833251677679486853481411877736519119587691568954
165869355715766226247765312288323735112191757463898521311924382559547492789597833495781979
715511252411921375817767951663179857446832918553997978625343976484715928463511118781628895
541426121124999566691455434155429767735362586925126556541675737539792738715667186947953359
862637732783913944169259124525779129194632431928171289586754219999656711389261675147567257
868516332412741231362462861462715642668966889655678453836766541479896458495722916573333692
195657936647552524845129733643832425167518827843941995695792165145367838667664555279341218
862451173256267455354511588577834869364727479261883286816224771336293566597699162876386223
 
+20120320201011010100200100110110100011010024120010001101010000120000210201211111213032137

The Corresponding
System of 135 Simultaneous Linear Equations
With 26 Unknowns A-Z

 2A+ 5B+ 1C+ 5D+ 7E+ 3F+ 5G    + 2I+ 3J+ 4K+ 4L+ 5M+ 2N+ 5O+ 3P+ 2Q+ 3R+ 5S+ 5T+ 3U+ 3V+ 2W+ 3X+ 4Y+ 4Z=449
 1A+ 7B+ 3C+ 3D+13E+ 3F+ 3G+ 3H+ 4I+ 2J+ 2K+ 2L+ 1M+ 1N+ 2O+ 2P+ 2Q+ 5R+ 7S+ 6T+ 1U+ 6V+ 8W    + 1Y+ 2Z=449
 5A+ 3B+ 1C+ 3D+ 7E+ 1F+ 3G+ 3H+ 5I+ 2J+ 1K+ 1L+ 2M+ 3N+ 1O+ 4P+ 4Q+ 6R+ 2S+ 5T+ 1U+10V+ 4W+ 4X+ 3Y+ 6Z=449
 1A+ 5B+ 4C+ 3D+ 8E+ 3F+ 2G+ 3H+ 2I+ 2J+ 5K+ 4L+ 2M+ 5N+ 1O+ 3P+ 2Q+ 3R+ 5S+ 4T+ 4U+ 6V+ 2W+ 2X+ 5Y+ 4Z=449
     5B+ 5C+ 4D+ 4E+ 6F+ 4G+ 4H+ 5I+ 1J+ 3K+ 4L+ 2M+ 6N+ 2O+ 4P+ 4Q+ 4R+ 3S+ 3T    + 8V+ 1W+ 5X+ 1Y+ 2Z=449
 2A+ 3B+ 2C+ 3D+ 8E+ 3F    + 1H+ 3I+ 5J+ 7K+ 5L+ 3M+ 5N+ 2O+ 4P+ 2Q+ 3R+ 5S+ 4T+ 5U+ 2V+ 2W+ 3X+ 5Y+ 3Z=449
 3A+ 6B+ 5C+ 1D+ 8E+ 2F+ 6G+ 1H+ 4I+ 1J+ 2K+ 2L+ 3M+ 1N+ 4O+ 4P+ 3Q+ 5R+ 8S+ 2T+ 3U+ 7V+ 3W+ 3X+ 1Y+ 2Z=449
 2A+ 1B+ 3C+ 2D+ 6E+ 3F+ 3G+ 3H+ 3I+ 5J+ 4K+ 6L+ 4M+ 5N+ 3O+ 3P+ 4Q+ 3R+ 3S+ 3T+ 2U+ 3V+ 4W+ 3X+ 3Y+ 6Z=449
 1A+ 1B+ 1C+ 3D+ 6E+ 2F+ 4G+ 4H+ 2I+ 3J+ 3K+ 3L+ 6M+ 2N+ 3O+ 4P+ 6Q+ 5R+ 1S+ 1T+ 6U+ 7V+ 6W+ 2X+ 3Y+ 5Z=449
 1A+ 5B+ 1C+ 3D+10E+ 4F+ 1G+ 1H+ 2I+ 3J+ 3K+ 4L+ 5M+ 6N+ 2O+ 4P+ 2Q+ 4R+ 5S+ 1T+ 4U+ 6V    + 3X+ 5Y+ 5Z=449
 1A+ 3B+ 4C+ 5D+ 7E+ 1F+ 4G+ 4H+ 6I+ 4J+ 3K+ 3L    + 2N+ 2O+ 3P+ 5Q+ 1R+ 5S+ 1T+ 7U+ 6V+ 1W+ 4X+ 4Y+ 4Z=449
 4A    + 2C+ 3D+ 5E+ 3F+ 3G+ 4H+ 2I+ 4J+ 1K+ 3L+ 3M+ 2N+ 5O+ 4P+ 4Q+ 6R+ 4S+ 1T+ 4U+ 7V+ 4W+ 3X+ 5Y+ 4Z=449
 1A+ 5B+ 2C+ 2D+ 6E+ 4F+ 5G+ 3H+ 5I+ 1J+ 6K+ 3L+ 4M+ 2N+ 2O+ 3P+ 1Q+ 2R+ 4S+ 4T+ 1U+10V+ 5W+ 3X+ 3Y+ 3Z=449
 2A+ 1B+ 2C+ 2D+ 4E+ 4F+ 1G+ 1H+ 6I+ 4J+ 6K+ 4L+ 7M+ 4N+ 7O+ 1P+ 2Q+ 3R+ 4S+ 5T+ 5U+ 2V+ 5W+ 3X+ 2Y+ 3Z=449
 3A+ 1B+ 5C+ 1D+ 6E+ 3F+ 3G+ 3H+ 5I+ 4J+ 2K+ 6L+ 3M+ 3N+ 4O+ 2P+ 3Q+ 6R+ 4S    + 3U+ 5V+ 5W+ 4X+ 1Y+ 5Z=449
 2A+ 4B+ 1C+ 3D+11E+ 2F+ 6G+ 6H+ 7I+ 3J+ 3K+ 2L+ 5M+ 7N    + 2P+ 4Q+ 1R    + 2T+ 6U+ 4V+ 3W+ 2X+ 2Y+ 2Z=449
 2A+ 3B+ 2C+ 6D+ 8E+ 5F+ 2G+ 2H+ 4I+ 2J+ 4K    + 2M+ 4N+ 6O+ 2P+ 3Q+ 3R+ 4S    + 2U+ 7V+ 7W+ 4X+ 3Y+ 3Z=449
 3A+ 7B+ 1C+ 4D+ 8E+ 3F+ 1G+ 2H+ 1I+ 4J+ 1K+ 4L+ 3M+ 5N    + 6P+ 1Q+ 3R+ 5S+ 2T+ 2U+ 7V    + 6X+ 4Y+ 7Z=449
     2B+ 3C+ 4D+ 6E+ 8F+ 3G+ 3H+ 6I    + 2K    + 2M+ 2N+ 2O+ 5P+ 3Q+ 3R+ 1S+ 4T+ 3U+12V+ 4W+ 5X+ 4Y+ 3Z=449
 3A+ 4B+ 4C+ 3D+ 8E+ 1F+ 2G+ 3H+ 1I+ 3J+ 4K+ 3L+ 1M+ 2N+ 5O+ 3P+ 1Q+ 4R+ 6S+ 3T+ 6U+ 5V+ 7W+ 1X+ 3Y+ 4Z=449
 4A+ 7B+ 3C    + 9E+ 1F        + 5I+ 2J+ 2K+ 3L+ 4M+ 2N+ 2O+ 4P+ 4Q+ 4R+ 6S+ 4T+ 6U+ 6V+ 4W+ 3X+ 2Y+ 3Z=449
 5A+ 6B+ 1C+ 4D+ 6E+ 2F+ 1G+ 1H+ 5I+ 4J+ 2K+ 2L+ 3M+ 3N+ 6O+ 3P+ 2Q+ 3R+ 6S+ 1T+ 3U+ 8V+ 5W+ 3X+ 4Y+ 1Z=449
 5A+ 3B+ 4C+ 1D+ 9E+ 4F+ 5G+ 6H+ 4I+ 1J+ 3K+ 2L+ 2M+ 1N+ 4O+ 1P+ 2Q+ 3R+ 6S+ 2T+ 4U+ 5V+ 1W+ 4X+ 1Y+ 7Z=449
 1A+ 2B+ 2C+ 5D+ 4E+ 8F+ 6G+ 3H+ 3I+ 3J+ 2K+ 5L    + 8N+ 3O+ 2P+ 1Q+ 3R+ 3S+ 4T+ 5U+ 9V    + 3X+ 4Y+ 1Z=449
 4A+ 3B+ 5C+ 1D+ 7E+ 5F+ 4G+ 6H+ 4I+ 1J+ 6K+ 5L    + 3N+ 4O+ 2P+ 5Q+ 2R+ 3S+ 2T+ 2U+ 5V+ 4W+ 2X+ 4Y+ 1Z=449
 2A+ 2B+ 3C+ 2D+ 9E+ 4F+ 5G+ 2H+ 2I+ 5J+ 4K+ 2L+ 2M+ 2N+ 1O+ 5P+ 3Q+ 3R+ 7S    + 2U+ 5V+ 4W+ 6X+ 4Y+ 4Z=449
 4A+ 1B+ 3C+ 4D+ 7E+ 4F+ 6G+ 2H+ 6I+ 2J+ 4K+ 1L+ 3M+ 5N+ 1O+ 4P+ 2Q+ 1R+ 2S+ 4T+ 4U+ 6V+ 5W+ 3X+ 5Y+ 1Z=449
 5A+ 3B+ 2C+ 2D+ 2E+ 5F+ 7G+ 3H+ 1I+ 5J+ 3K+ 7L+ 2M+ 5N+ 4O+ 1P+ 3Q+ 2R+ 2S+ 3T+ 4U+ 6V+ 2W+ 4X+ 3Y+ 4Z=449
 7A+ 5B+ 4C+ 2D+ 7E+ 3F+ 5G+ 9H+ 4I+ 3J+ 5K+ 2L+ 2M    + 3O+ 2P+ 5Q+ 3R+ 3S+ 2T+ 2U+ 4V+ 1W+ 2X+ 3Y+ 2Z=449
 2A+ 5B+ 3C+ 3D+ 6E+ 2F+ 6G+ 6H+ 3I+ 5J+ 5K+ 6L+ 2M+ 4N+ 2O+ 2P+ 4Q+ 2R+ 2S+ 4T+ 2U+ 5V+ 5W    + 1Y+ 3Z=449
 5A+ 6B+ 3C+ 5D+ 4E+ 3F+ 3G+ 3H+ 2I    + 3K+ 4L+ 3M+ 3N+ 1O+ 4P+ 1Q+ 3R+ 4S    + 8U+10V+ 4W+ 3X+ 1Y+ 4Z=449
 6A+ 6B+ 3C+ 3D+ 6E+ 1F+ 2G+ 3H+ 3I+ 3J+ 5K+ 4L+ 1M+ 4N+ 6O+ 2P+ 5Q+ 2R+ 3S+ 2T+ 6U+ 3V+ 4W+ 3X+ 1Y+ 3Z=449
 8A+ 2B+ 5C+ 3D+ 4E+ 5F+ 5G    + 3I    + 4K+ 5L+ 4M+ 7N+ 3O+ 2P+ 4Q+ 1R+ 5S+ 5T    + 3V+ 6W+ 1X+ 2Y+ 3Z=449
 4A+ 5B+ 3C+ 4D+ 8E+ 1F+ 2G+ 4H+ 5I+ 1J+ 1K+ 2L+ 6M+ 4N+ 3O+ 3P+ 3Q+ 5R+ 5S    + 1U+ 6V+ 3W+ 3X+ 5Y+ 3Z=449
 2A+ 4B+ 3C+ 5D+ 7E+ 6F+ 3G+ 3H+ 2I+ 4J+ 2K+ 4L+ 4M    + 2O+ 1P+ 6Q+ 2R+ 4S+ 3T+ 3U+ 4V+ 7W+ 2X+ 3Y+ 4Z=449
 6A+ 8B+ 4C+ 1D+ 2E+ 4F+ 1G+ 6H+ 2I+ 5J+ 3K+ 3L+ 1M+ 7N+ 2O+ 1P+ 5Q+ 1R+ 2S+ 3T+ 2U+ 7V+ 3W+ 6X+ 1Y+ 4Z=449
 3A+ 3B+ 5C+ 4D+ 5E+ 6F+ 1G+ 7H+ 4I+ 3J+ 3K+ 4L+ 2M+ 4N+ 4O+ 4P+ 3Q+ 4R+ 4S+ 1T+ 2U+ 4V+ 2W+ 4X+ 2Y+ 2Z=449
 2A+ 1B+ 2C+ 4D+ 6E+ 6F+ 4G+ 4H+ 3I+ 4J+ 3K+ 1L+ 2M+ 4N+ 3O+ 3P+ 4Q+ 4R+ 3S+ 3T+ 5U+ 7V+ 4W+ 3X+ 3Y+ 2Z=449
 2A+ 4B+ 4C+ 3D+ 4E+ 1F+ 4G+ 3H+ 6I+ 1J+ 7K+ 4L+ 6M+ 1N+ 3O+ 3P+ 3Q+ 4R+ 2S+ 3T+ 4U+ 7V+ 5W+ 1X+ 4Y+ 1Z=449
 2A+ 2B+ 1C+ 3D+ 7E+ 6F+ 4G+ 1H+ 4I+ 3J+ 7K+ 3L+ 1M+ 2N+ 2O+ 4P+ 4Q+ 1R+ 4S+ 1T+ 2U+ 9V+ 4W+ 5X+ 4Y+ 4Z=449
 4A+ 5B+ 2C+ 2D+ 3E    + 4G+ 6H+ 4I+ 3J+ 7K+ 2L+ 3M+ 6N+ 2O+ 2P+ 4Q+ 1R+ 2S+ 4T+ 5U+ 7V+ 5W+ 3X+ 2Y+ 2Z=449
 1A+ 5B+ 4C+ 1D+ 5E+ 1F+ 4G+ 4H+ 5I+ 1J+ 3K+ 5L+ 6M+ 4N+ 5O+ 5P+ 2Q+ 1R+ 3S+ 1T+ 3U+ 8V+ 3W+ 2X+ 4Y+ 4Z=449
 6A+ 4B+ 3C+ 4D+ 6E+ 4F+ 5G+ 4H    + 1J+ 1K+ 1L+ 3M+ 5N+ 3O    + 4Q+ 3R+ 7S+ 5T+ 7U+ 2V+ 2W+ 4X+ 3Y+ 3Z=449
 5A+ 3B+ 4C+ 4D+ 5E+ 4F+ 1G+ 3H+ 3I+ 2J+ 6K+ 2L+ 2M+ 5N+ 3O+ 3P+ 6Q+ 2R+ 4S+ 3T+ 3U+ 4V+ 5W+ 3X+ 2Y+ 3Z=449
 3A+ 4B+ 4C+ 1D+ 4E+ 2F+ 1G+ 4H+ 1I+ 1J+ 1K+ 5L+ 5M+ 3N+ 3O+ 7P+ 5Q+ 7R+ 8S+ 4T+ 4U+ 4V+ 3W+ 3X+ 2Y+ 1Z=449

         2C+ 1D+ 5E+ 2F+ 1G+ 1H+ 2I+ 1J+ 2K+ 3L+ 2M+ 4N+ 1O+ 1P    + 3R+ 2S+ 2T+ 1U+ 7V+ 1W        + 1Z=191
 1A        + 3D+ 7E+ 3F+ 1G+ 1H+ 1I+ 2J    + 2L+ 1M+ 1N+ 5O    + 2Q+ 2R+ 1S+ 4T+ 5U+ 1V    + 1X    + 1Z=193
 1A+ 2B+ 6C+ 2D+ 6E    + 2G+ 2H+ 2I+ 1J    + 2L+ 2M+ 1N+ 2O    + 3Q+ 1R+ 1S    + 1U+ 2V+ 3W+ 1X+ 1Y+ 1Z=193
 1A+ 2B+ 2C    + 2E        + 5H    + 3J+ 1K+ 1L+ 1M+ 4N    + 1P+ 2Q+ 1R+ 3S    + 2U+ 9V+ 3W+ 1X+ 1Y    =194
     2B+ 1C    + 5E+ 1F+ 4G+ 3H    + 1J+ 2K+ 6L+ 1M    + 1O    + 3Q+ 1R+ 2S+ 4T+ 1U+ 4V        + 2Y+ 1Z=196
 1A+ 1B+ 1C+ 3D+ 6E    + 1G    + 3I+ 1J+ 1K+ 2L+ 2M+ 1N+ 1O+ 2P+ 2Q+ 1R+ 1S+ 1T+ 1U+ 5V+ 2W+ 2X+ 3Y+ 1Z=196
 2A        + 4D+ 4E+ 2F+ 2G+ 1H+ 1I+ 1J+ 5K+ 4L+ 1M+ 2N+ 1O+ 1P+ 1Q+ 1R+ 2S        + 4V+ 2W+ 2X    + 2Z=199
 2A+ 1B+ 1C+ 4D+ 3E+ 1F+ 2G+ 2H+ 1I    + 1K+ 3L+ 2M    + 3O    + 2Q+ 2R    + 2T    + 5V+ 1W+ 1X+ 4Y+ 2Z=201
 3A+ 1B+ 3C+ 2D+ 5E+ 2F+ 1G+ 1H+ 3I+ 1J+ 2K+ 1L+ 2M    + 3O+ 1P+ 1Q+ 1R+ 1S+ 1T+ 2U+ 3V    + 2X    + 3Z=201
 3A+ 3B+ 2C+ 4D+ 3E    + 3G+ 4H+ 1I+ 3J        + 2M+ 1N+ 3O+ 2P+ 1Q    + 2S        + 3V+ 2W+ 2X    + 1Z=203
 3A+ 3B+ 1C+ 3D+ 2E    + 3G+ 2H    + 1J+ 2K+ 2L+ 3M+ 1N    + 2P        + 1S+ 2T+ 2U+ 4V+ 1W+ 3X+ 3Y+ 1Z=203
 2A    + 1C+ 2D+ 4E    + 1G+ 1H    + 2J    + 1L    + 2N+ 2O+ 2P+ 2Q+ 4R+ 3S+ 1T    + 5V+ 4W+ 3X+ 2Y+ 1Z=204
     3B+ 4C+ 2D+ 4E+ 2F+ 4G+ 2H+ 2I+ 3J+ 2K    + 1M    + 2O+ 1P+ 1Q+ 1R+ 1S+ 1T+ 1U+ 3V    + 4X    + 1Z=204
 2A+ 3B+ 1C    + 5E+ 1F+ 2G+ 1H+ 1I    + 5K+ 1L    + 2N+ 1O    + 1Q+ 1R+ 3S+ 3T+ 2U+ 4V+ 3W+ 3X        =205
 1A+ 1B+ 3C+ 1D+ 2E+ 1F+ 1G+ 3H    + 3J+ 4K+ 1L+ 1M    + 1O+ 1P+ 1Q+ 1R+ 4S+ 3T    + 3V+ 2W+ 3X+ 1Y+ 3Z=206
 2A+ 1B+ 1C+ 1D+ 4E+ 1F+ 2G+ 2H+ 3I    + 1K+ 1L+ 3M+ 2N+ 2O    + 2Q+ 2R+ 2S+ 2T+ 2U+ 5V+ 1W+ 1X+ 1Y+ 1Z=206
 2A+ 1B+ 3C+ 2D+ 2E    + 3G+ 1H+ 1I+ 1J+ 1K+ 2L+ 2M+ 4N+ 3O+ 1P+ 1Q    + 5S+ 2T+ 2U+ 2V+ 2W+ 1X+ 1Y    =207
 2A+ 1B+ 1C+ 4D+ 2E+ 1F+ 1G+ 2H    + 2J+ 1K+ 3L+ 1M+ 5N+ 2O+ 1P+ 5Q+ 1R+ 1S+ 1T+ 2U+ 3V+ 2W        + 1Z=207
         1C+ 1D+ 2E+ 1F+ 2G+ 4H    + 3J+ 1K+ 1L+ 1M    + 1O+ 1P+ 3Q+ 2R+ 4S+ 4T+ 1U+ 2V+ 1W+ 5X+ 2Y+ 2Z=208
 3A+ 1B        + 7E+ 1F+ 1G    + 1I    + 4K+ 1L    + 2N+ 3O+ 3P+ 2Q    + 3S+ 2T+ 3U+ 4V+ 2W        + 2Z=208
 2A+ 2B+ 2C+ 1D+ 3E+ 2F    + 2H+ 1I    + 1K+ 3L+ 3M    + 1O+ 1P+ 3Q+ 2R    + 2T+ 3U+ 3V+ 1W+ 3X+ 1Y+ 3Z=208
 2A+ 2B+ 1C+ 2D+ 3E+ 2F+ 1G+ 1H+ 2I+ 2J    + 2L+ 2M+ 2N+ 4O    + 1Q+ 1R+ 2S+ 2T+ 1U+ 4V+ 2W+ 1X+ 3Y    =210
 3A+ 1B+ 2C+ 1D+ 2E+ 1F+ 2G+ 2H+ 1I+ 1J+ 4K+ 1L+ 2M+ 2N        + 2Q+ 2R+ 3S+ 2T+ 2U+ 2V+ 1W+ 4X+ 1Y+ 1Z=210
 3A+ 2B+ 3C+ 1D+ 4E+ 4F+ 1G+ 2H    + 3J+ 2K    + 3M    + 1O+ 1P+ 1Q    + 2S+ 2T+ 3U+ 2V+ 1W+ 1X    + 3Z=210
 2A+ 2B+ 3C+ 2D+ 3E+ 2F+ 2G+ 1H            + 2L+ 2M+ 2N    + 2P+ 2Q    + 3S+ 4T+ 1U+ 3V+ 2W+ 1X+ 2Y+ 2Z=211
     1B+ 4C+ 3D+ 7E+ 4F+ 2G    + 4I+ 1J+ 2K+ 2L+ 3M+ 1N                + 3S+ 2T+ 1U+ 1V        + 3Y+ 1Z=211
 5A+ 1B+ 3C+ 2D+ 8E+ 2F+ 2G+ 2H+ 1I            + 1M+ 1N+ 2O+ 2P    + 1R+ 2S+ 1T+ 4U    + 1W+ 1X    + 3Z=211
     1B+ 1C+ 1D+ 4E    + 2G+ 2H+ 2I    + 1K+ 4L+ 1M+ 1N+ 4O+ 2P+ 1Q    + 2S+ 3T+ 3U+ 3V+ 1W+ 1X+ 4Y+ 1Z=212
 1A    + 2C+ 2D+ 3E+ 1F+ 3G+ 3H+ 2I    + 3K        + 5N+ 2O+ 2P+ 1Q+ 2R+ 1S+ 1T+ 2U+ 3V+ 2W+ 4X        =213
 1A+ 2B+ 3C+ 2D+ 4E+ 1F+ 2G+ 1H+ 1I+ 1J    + 2L+ 2M+ 1N    + 3P+ 3Q+ 2R+ 1S+ 3T+ 2U+ 2V+ 4W+ 1X+ 1Y    =213
 2A+ 1B+ 1C+ 3D+ 2E+ 1F+ 2G+ 1H+ 1I+ 1J+ 1K+ 3L+ 2M+ 2N+ 2O+ 1P+ 1Q+ 1R+ 3S    + 2U+ 3V+ 3W+ 3X+ 1Y+ 2Z=214
     1B+ 4C+ 2D+ 3E+ 2F+ 2G    + 4I+ 3J+ 1K+ 3L+ 3M    + 1O+ 2P    + 1R+ 1S+ 2T+ 1U+ 1V+ 2W+ 3X+ 1Y+ 2Z=215
 1A+ 2B+ 3C    + 3E+ 3F    + 2H+ 2I+ 1J+ 1K+ 2L+ 1M+ 2N+ 4O+ 2P+ 2Q+ 2R+ 1S    + 1U+ 4V    + 3X+ 2Y+ 1Z=215
 2A+ 1B+ 1C    + 2E+ 2F    + 2H+ 2I+ 3J+ 1K+ 1L+ 1M+ 3N+ 2O+ 4P+ 1Q+ 2R    + 1T+ 3U+ 6V+ 2W+ 2X    + 1Z=216
 2A+ 2B    + 1D+ 3E    + 2G+ 2H+ 1I+ 2J+ 2K+ 4L+ 3M+ 3N+ 3O+ 4P+ 5Q    + 1S    + 1U    + 1W+ 2X    + 1Z=216
 4A+ 2B+ 3C+ 2D+ 2E        + 2H+ 2I    + 1K+ 1L+ 1M    + 3O    + 2Q+ 2R+ 2S    + 4U+ 4V+ 6W+ 1X+ 1Y    =216
 1A+ 2B+ 4C    + 4E+ 6F            + 2J    + 2L    + 2N+ 1O+ 3P+ 1Q    + 1S    + 3U+ 7V+ 2W    + 3Y+ 1Z=216
 2A+ 3B+ 1C+ 5D+ 4E+ 3F+ 1G+ 1H+ 1I+ 2J+ 1K+ 4L+ 2M+ 3N    + 1P    + 2R+ 1S    + 2U+ 2V+ 1W+ 1X+ 1Y+ 1Z=217
 2A+ 1B+ 2C+ 1D+ 5E+ 2F    + 1H    + 2J+ 4K+ 1L+ 2M+ 1N+ 1O    + 1Q+ 3R+ 2S+ 1T+ 2U+ 1V+ 4W+ 2X+ 2Y+ 2Z=218
 2A+ 3B+ 2C    + 3E+ 1F+ 5G+ 1H+ 1I+ 2J+ 1K+ 1L+ 2M+ 2N    + 2P+ 2Q+ 1R+ 1S+ 2T+ 2U+ 4V+ 1W+ 2X+ 2Y    =218
 1A+ 2B+ 3C+ 2D+ 3E+ 4F                + 3K+ 4L    + 1N+ 2O+ 1P    + 1R+ 4S+ 1T+ 3U+ 4V+ 4W    + 1Y+ 1Z=219
 2A    + 4C    + 2E+ 1F+ 1G+ 2H+ 4I+ 2J+ 2K    + 3M+ 1N+ 2O+ 2P    + 3R+ 5S        + 5V    + 1X    + 3Z=219
         2C+ 2D+ 3E        + 4H+ 1I+ 1J+ 2K    + 1M+ 2N+ 3O+ 2P+ 2Q+ 3R+ 3S    + 1U+ 2V+ 2W+ 4X+ 4Y+ 1Z=219
     1B+ 2C+ 1D+ 4E+ 2F+ 1G    + 3I+ 1J+ 4K+ 2L+ 2M+ 1N+ 1O+ 2P+ 2Q+ 3R+ 1S+ 1T+ 2U+ 2V+ 2W+ 3X+ 2Y    =221
     1B+ 4C+ 3D+ 5E+ 3F    + 3H+ 1I+ 1J+ 1K    + 1M+ 2N+ 1O+ 4P+ 1Q+ 1R+ 1S+ 1T+ 3U    + 3W+ 2X+ 1Y+ 2Z=225
 3A+ 1B    + 1D+ 3E+ 2F+ 3G    + 3I+ 1J+ 5K+ 3L+ 2M+ 2N+ 2O        + 1R        + 3U+ 3V+ 2W+ 2X+ 1Y+ 2Z=226
     3B+ 2C    + 4E+ 2F+ 1G+ 2H+ 1I+ 4J+ 2K+ 1L+ 1M+ 1N+ 1O+ 3P+ 2Q+ 2R+ 1S+ 2T+ 1U+ 3V+ 2W+ 1X+ 1Y+ 2Z=228
 2A        + 2D+ 2E+ 3F+ 3G+ 3H+ 5I+ 1J+ 1K+ 3L+ 3M+ 3N+ 2O+ 1P+ 1Q    + 1S        + 4V+ 1W+ 1X+ 1Y+ 2Z=228
             2D+ 3E+ 1F+ 2G+ 4H+ 4I+ 1J+ 3K+ 2L+ 1M+ 2N+ 1O        + 3R+ 1S+ 2T+ 2U+ 1V+ 2W+ 5X+ 2Y+ 1Z=228
 4A+ 1B        + 3E    + 3G    + 3I    + 3K+ 2L+ 3M+ 2N+ 2O+ 3P+ 2Q+ 3R+ 1S    + 1U+ 5V+ 1W        + 3Z=229
 2A+ 4B+ 2C    + 3E+ 1F+ 3G        + 1J    + 2L+ 1M+ 4N+ 1O    + 3Q+ 1R+ 3S+ 2T+ 1U+ 3V+ 1W+ 2X+ 3Y+ 2Z=229
 2A+ 3B+ 2C+ 1D+ 4E+ 4F+ 2G+ 3H+ 2I    + 2K+ 1L    + 1N+ 2O+ 1P+ 1Q+ 1R+ 2S+ 1T+ 2U+ 4V+ 1W+ 1X+ 1Y+ 1Z=229
 1A        + 3D+ 2E+ 2F+ 1G+ 1H+ 1I    + 3K+ 1L+ 2M+ 1N    + 2P+ 4Q+ 3R+ 1S+ 1T+ 2U+ 3V+ 4W+ 3X+ 3Y+ 1Z=229
         1C    + 3E+ 1F+ 2G+ 4H+ 4I+ 1J+ 1K+ 1L+ 1M+ 3N+ 1O+ 2P+ 2Q    + 3S    + 3U+ 5V    + 2X+ 3Y+ 2Z=230
 1A+ 2B    + 1D+ 3E+ 1F+ 1G+ 4H+ 1I+ 1J+ 1K+ 2L+ 1M+ 2N    + 2P+ 1Q+ 4R+ 2S+ 3T    + 4V+ 1W+ 2X+ 2Y+ 3Z=231
 1A+ 2B    + 3D+ 3E+ 3F+ 1G+ 1H+ 2I+ 1J+ 1K+ 1L+ 4M    + 1O+ 2P+ 1Q+ 2R+ 3S        + 5V+ 4W    + 3Y+ 1Z=231
 2A+ 2B+ 1C+ 1D+ 3E    + 4G+ 3H+ 2I    + 3K+ 1L    + 2N+ 1O    + 2Q    + 4S+ 1T+ 2U+ 4V+ 2W+ 1X+ 2Y+ 2Z=232
 2A+ 3B+ 1C+ 2D+ 2E+ 2F+ 1G+ 2H+ 2I+ 3J+ 2K+ 1L+ 1M    + 1O+ 1P+ 1Q+ 2R+ 4S+ 1T+ 2U+ 3V+ 2W+ 2X+ 1Y+ 1Z=232
 1A+ 2B    + 2D+ 4E+ 1F+ 2G+ 5H+ 1I+ 2J    + 1L+ 2M+ 3N+ 2O    + 3Q+ 1R+ 4S        + 1V+ 3W+ 1X+ 3Y+ 1Z=233
 3A+ 2B    + 1D+ 1E+ 2F+ 2G            + 4K    + 4M+ 1N+ 3O+ 1P+ 1Q+ 1R+ 2S+ 2T+ 3U+ 3V+ 4W+ 1X+ 2Y+ 2Z=233
 1A+ 4B+ 1C+ 1D+ 5E+ 1F+ 5G+ 1H+ 2I+ 2J    + 3L+ 1M+ 2N+ 2O+ 2P        + 2S    + 1U+ 2V+ 6W+ 1X        =233
 2A+ 3B+ 2C        + 1F+ 2G+ 1H+ 3I+ 3J+ 1K+ 6L    + 2N    + 2P    + 2R    + 2T+ 3U+ 4V+ 2W+ 2X+ 1Y+ 1Z=233
 2A+ 5B+ 1C+ 2D+ 4E            + 1I+ 1J+ 3K    + 1M+ 2N    + 1P+ 4Q+ 1R+ 2S+ 1T+ 2U+ 5V+ 1W    + 2Y+ 4Z=233
     1B+ 3C+ 1D+ 2E+ 1F    + 1H+ 4I+ 3J+ 3K+ 1L    + 1N+ 3O+ 1P+ 2Q+ 2R+ 3S    + 3U+ 3V    + 2X+ 4Y+ 1Z=234
     3B+ 1C+ 2D+ 3E+ 4F+ 1G+ 2H+ 3I+ 1J+ 2K+ 2L        + 3O+ 4P+ 2Q    + 1S+ 2T+ 2U+ 4V+ 1W    + 1Y+ 1Z=236
 4A+ 1B+ 2C    + 2E        + 1H+ 4I+ 3J+ 2K+ 1L+ 1M+ 2N+ 1O+ 3P+ 2Q+ 3R+ 3S        + 3V+ 2W+ 2X    + 3Z=236
 1A+ 1B    + 1D+ 5E+ 4F+ 1G    + 1I+ 2J+ 3K+ 1L+ 2M+ 2N+ 2O+ 4P    + 2R+ 4S+ 3T        + 3W+ 1X+ 1Y+ 1Z=236
     2B+ 3C    + 3E    + 3G+ 2H+ 1I    + 3K    + 2M+ 1N+ 2O+ 2P+ 1Q+ 3R+ 3S+ 1T+ 1U+ 4V+ 1W+ 1X+ 1Y+ 5Z=236
 1A    + 1C+ 2D+ 3E+ 2F+ 1G+ 1H+ 2I    + 2K+ 4L+ 1M+ 3N    + 4P+ 2Q+ 2R+ 3S+ 1T+ 4U+ 1V+ 2W+ 1X+ 1Y+ 1Z=236
 3A+ 2B    + 2D+ 2E+ 4F+ 3G    + 1I    + 2K    + 1M+ 1N+ 3O+ 1P+ 2Q+ 2R+ 3S+ 1T+ 1U+ 3V+ 2W+ 3X+ 2Y+ 1Z=238
 2A        + 2D+ 1E+ 2F+ 3G+ 2H+ 5I+ 3J+ 3K+ 2L    + 2N    + 1P    + 2R+ 2S+ 4T+ 3U+ 3V    + 1X+ 1Y+ 1Z=239
 1A+ 2B+ 1C    + 5E+ 4F+ 3G+ 1H+ 2I+ 1J    + 1L+ 3M+ 1N+ 1O+ 1P+ 1Q+ 5R+ 2S+ 1T+ 3U+ 3V+ 1W    + 2Y    =239
 2A        + 2D+ 3E+ 3F+ 1G+ 1H+ 3I+ 3J+ 2K+ 1L+ 1M+ 5N+ 1O+ 1P+ 1Q+ 2R+ 1S+ 3T    + 2V+ 2W    + 4Y+ 1Z=241
 1A+ 4B    + 1D+ 5E+ 3F        + 2I+ 3J+ 2K+ 2L+ 2M+ 3N+ 1O+ 2P+ 2Q+ 1R    + 3T+ 2U    + 1W+ 1X+ 1Y+ 3Z=241
 1A+ 3B+ 4C+ 3D+ 4E+ 5F+ 2G+ 3H+ 1I    + 1K+ 2L+ 1M+ 1N    + 2P+ 1Q+ 1R+ 2S+ 1T    + 1V+ 2W        + 4Z=242
 2A+ 2B    + 3D    + 1F+ 4G+ 2H+ 3I+ 1J+ 2K+ 2L+ 2M+ 2N    + 1P+ 4Q+ 1R+ 1S+ 3T+ 3U+ 1V    + 2X    + 3Z=244
     5B    + 2D+ 2E    + 2G+ 2H+ 3I+ 1J+ 2K+ 1L+ 3M+ 2N+ 2O+ 2P+ 1Q+ 2R+ 2S    + 2U+ 2V+ 2W+ 3X+ 1Y+ 1Z=245
 1A+ 2B+ 1C    + 2E+ 1F+ 2G+ 1H+ 2I+ 4J        + 1M+ 3N+ 2O    + 1Q+ 4R    + 4T+ 1U+ 3V+ 5W+ 1X    + 4Z=246
     5B    + 1D    + 1F+ 3G        + 1J+ 1K+ 2L+ 1M+ 2N        + 7Q+ 2R+ 2S+ 2T+ 3U+ 5V+ 3W+ 1X+ 1Y+ 2Z=247
     4B+ 1C+ 1D+ 3E+ 2F+ 1G    + 1I+ 1J+ 2K+ 1L    + 4N+ 1O+ 1P+ 2Q+ 2R+ 4S+ 1T+ 1U+ 4V+ 2W+ 1X+ 4Y+ 1Z=248
 1A    + 3C    + 3E+ 2F+ 2G+ 1H+ 2I    + 2K+ 2L+ 1M+ 4N+ 1O+ 3P+ 1Q+ 1R+ 2S+ 1T+ 2U    + 2W+ 2X+ 5Y+ 2Z=249
     3B+ 1C+ 1D+ 1E+ 1F+ 2G+ 4H+ 2I+ 1J+ 2K+ 1L+ 2M+ 1N+ 4O+ 1P+ 1Q+ 4R+ 3S    + 3U+ 2V+ 2W+ 1X+ 1Y+ 1Z=251
     4B    + 2D+ 5E+ 3F    + 1H+ 3I+ 1J+ 3K    + 2M+ 1N+ 2O+ 2P    + 2R        + 4U+ 3V+ 3W    + 2Y+ 2Z=252
 2A+ 3B+ 1C    + 1E+ 2F    + 1H+ 2I+ 4J    + 2L+ 2M+ 2N    + 3P+ 4Q+ 1R+ 4S+ 1T+ 2U+ 1V+ 2W+ 1X+ 1Y+ 3Z=255
 1A+ 7B    + 2D+ 4E    + 2G+ 1H        + 2K+ 2L    + 4N+ 3O+ 2P+ 3Q+ 1R+ 2S    + 2U+ 1V+ 1W+ 1X    + 4Z=255
 4A+ 3B    + 1D+ 1E+ 3F+ 1G+ 4H+ 3I    + 2K+ 2L    + 3N+ 1O+ 2P+ 1Q+ 3R+ 1S+ 1T+ 2U+ 3V    + 1X+ 1Y+ 2Z=258
 1A+ 1B    + 1D+ 5E+ 4F+ 1G+ 2H+ 4I+ 1J+ 2K+ 1L    + 1N    + 2P+ 2Q+ 1R+ 2S+ 2T+ 2U+ 1V+ 1W+ 1X+ 4Y+ 3Z=260
 4A+ 6B+ 2C+ 3D+ 1E+ 3F+ 2G+ 2H+ 3I        + 1L+ 1M+ 1N    + 2P+ 2Q+ 1R+ 1S    + 1U+ 2V+ 1W+ 2X+ 2Y+ 2Z=261
 2A+ 5B+ 1C+ 1D+ 1E+ 1F+ 3G+ 2H+ 2I+ 1J+ 3K    + 2M+ 2N        + 4Q+ 1R+ 2S    + 1U+ 3V+ 3W    + 2Y+ 3Z=264
 3A+ 2B            + 1F+ 1G+ 1H+ 4I+ 2J+ 2K+ 1L+ 2M+ 2N+ 1O+ 3P+ 2Q+ 2R+ 4S+ 1T+ 1U+ 1V+ 1W+ 2X+ 2Y+ 4Z=271

The Corresponding Solution

solution

You may be content with trying to solve these puzzles using brute force.
Go right ahead.
I dare you.
I, too, enjoy the challenge to my intuition associated with trial and error.
But only up to a point.
When my intuition fails me, as it often does, I employ my last resort.
I fall back upon the school-boyish, elimination method.
There is no shame in solving these puzzles analytically.
Which is easy for me to say, but hard for you to do.
So, I made the situation fair for everyone.
I published a companion piece.
It contains all 146,853 pairs of the checksums required to set up the 146,853 systems of linear equations:
(a) The common linear checksum (e.g. 449 ).
(b) The first of the ninety columnar checksums (e.g. 191).
Each benign cheat is four-parted (e.g. 1, 1, 449, and 191):
(a) The volume number within the book series.
(b) The relative puzzle number within the volume.
(c) The common linear checksum of the pertinent puzzle.
(d) The first columnar checksum of said puzzle.

The First Page Of The All-In-One Cheat Sheet

  1   1 449 191     1  51 427 178     1 101 452 191     2   4 453 184     2  54 442 176
  1   2 432 173     1  52 471 194     1 102 454 183     2   5 448 188     2  55 457 190
  1   3 448 179     1  53 473 195     1 103 470 190     2   6 437 175     2  56 459 195
  1   4 452 193     1  54 471 190     1 104 458 192     2   7 472 201     2  57 470 186
  1   5 463 183     1  55 459 192     1 105 450 183     2   8 462 190     2  58 429 169
  1   6 442 178     1  56 473 201     1 106 467 188     2   9 438 172     2  59 466 187
  1   7 433 173     1  57 431 172     1 107 464 197     2  10 441 182     2  60 457 192
  1   8 466 192     1  58 437 176     1 108 425 180     2  11 437 180     2  61 474 191
  1   9 440 171     1  59 440 193     1 109 474 189     2  12 474 196     2  62 445 183
  1  10 472 202     1  60 459 196     1 110 466 198     2  13 434 172     2  63 459 196
  1  11 428 157     1  61 461 194     1 111 473 185     2  14 469 197     2  64 437 174
  1  12 453 183     1  62 474 197     1 112 474 205     2  15 445 174     2  65 463 193
  1  13 437 174     1  63 427 171     1 113 466 199     2  16 459 192     2  66 425 172
  1  14 441 187     1  64 471 190     1 114 426 174     2  17 451 183     2  67 439 174
  1  15 435 179     1  65 443 187     1 115 474 202     2  18 453 181     2  68 438 180
  1  16 455 189     1  66 430 168     1 116 454 185     2  19 439 183     2  69 468 198
  1  17 453 180     1  67 470 195     1 117 441 181     2  20 432 173     2  70 436 182
  1  18 451 179     1  68 462 195     1 118 465 184     2  21 433 176     2  71 472 198
  1  19 450 193     1  69 466 188     1 119 443 179     2  22 438 184     2  72 458 189
  1  20 438 178     1  70 450 181     1 120 441 183     2  23 473 203     2  73 431 182
  1  21 456 179     1  71 431 178     1 121 451 183     2  24 469 198     2  74 431 180
  1  22 425 159     1  72 459 185     1 122 444 185     2  25 447 182     2  75 433 179
  1  23 462 190     1  73 460 193     1 123 442 182     2  26 464 194     2  76 467 182
  1  24 457 185     1  74 457 188     1 124 427 170     2  27 439 178     2  77 440 187
  1  25 443 182     1  75 437 178     1 125 436 184     2  28 466 195     2  78 457 189
  1  26 428 170     1  76 448 169     1 126 463 203     2  29 437 184     2  79 468 195
  1  27 452 184     1  77 440 177     1 127 470 189     2  30 461 191     2  80 472 197
  1  28 439 177     1  78 452 183     1 128 459 180     2  31 429 174     2  81 426 169
  1  29 449 186     1  79 469 197     1 129 455 183     2  32 445 184     2  82 469 193
  1  30 470 196     1  80 468 191     1 130 453 187     2  33 452 184     2  83 473 196
  1  31 465 200     1  81 461 199     1 131 428 167     2  34 457 186     2  84 426 165
  1  32 467 191     1  82 466 196     1 132 425 168     2  35 474 203     2  85 425 173
  1  33 457 188     1  83 468 194     1 133 445 180     2  36 432 178     2  86 425 173
  1  34 444 176     1  84 449 188     1 134 450 182     2  37 433 179     2  87 440 174
  1  35 470 200     1  85 451 183     1 135 431 171     2  38 446 181     2  88 450 188
  1  36 457 187     1  86 432 173     1 136 427 170     2  39 433 173     2  89 453 184
  1  37 427 166     1  87 452 185     1 137 461 206     2  40 454 187     2  90 429 177
  1  38 446 176     1  88 452 186     1 138 473 197     2  41 446 180     2  91 471 195
  1  39 448 190     1  89 456 181     1 139 429 180     2  42 473 199     2  92 438 178
  1  40 465 199     1  90 464 178     1 140 464 188     2  43 434 168     2  93 449 188
  1  41 454 186     1  91 440 178     1 141 432 177     2  44 465 187     2  94 457 177
  1  42 461 186     1  92 426 169     1 142 447 180     2  45 447 180     2  95 443 178
  1  43 438 170     1  93 462 187     1 143 429 181     2  46 428 173     2  96 431 179
  1  44 442 171     1  94 465 184     1 144 461 185     2  47 473 199     2  97 428 183
  1  45 473 199     1  95 428 166     1 145 471 193     2  48 428 177     2  98 465 187
  1  46 468 199     1  96 474 200     1 146 445 181     2  49 474 197     2  99 459 196
  1  47 431 172     1  97 472 192     1 147 469 196     2  50 452 182     2 100 444 190
  1  48 451 182     1  98 472 196     2   1 470 196     2  51 474 199     2 101 440 187
  1  49 448 185     1  99 441 178     2   2 437 180     2  52 472 200     2 102 456 183
  1  50 460 190     1 100 471 192     2   3 463 191     2  53 438 188     2 103 435 180

4,699,296 Bookend Puzzles by Francis Gurtowski

This is yet another serious, serious series of 999 books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

Once again, each of these sequels takes full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

Each volume contains 4,704 Bookend Puzzles.

The concept is simple enough.

Each Bookend Puzzle consists of a 132-place row of decimal digits formed by concatenating some 24-36 prime numbers ranging from 101 to 999983.

The challenge is to separate the given row into its components i.e. find and mark all of the pertinent prime numbers hidden in plain sight.

A prime number is a school-boyish counting number with exactly two factors, namely 1 and the number itself.

Here is such an aforesaid row:

21152259574687254899263358157527959348745751
68292812439916827174191259592139276796134847
51497352457363329377818952125499377274315521

Now here I have broken the row down into its intended constituents:

21152259574687254899263358157527959348745751
68292812439916827174191259592139276796134847
51497352457363329377818952125499377274315521

The concatenated components of the row, in a row, are 211, 52259, 574687, 254899, 263, 358157, 5279, 593, 487457, 516829, 281243, 991, 6827, 17419, 1259, 592139, 2767, 9613, 484751, 4973, 52457, 363329, 37781, 89521, 254993, 7727, 431, and 5521.

If you accept the premise that a prime number is analogous to a word, then a Bookend Puzzle is a counterpart of a word search puzzle with certain cosmetic deviations, namely (a) a row does not rigorously fit the accepted notion of a grid, (b) a list of the prime numbers that are sought after is not provided to you, and (c) Bookend Puzzles are not topical; the common theme of one and all is prime numbers per se.

Here is a hint.

You might want to try solving Bookend Puzzles by recursively pruning the respective rows outside-in, i.e. alternatively left-to-right and right-to-left and lopping off the bookends.

With respect to the row shown above, 211 is definitely the first component because the alternative, i.e. 2115, is excessively factorable: 3, 5, 9, 15, 45, 47, 141, 235, 423, and 705.

Okay, so far.

Here is a rub: on the opposite end of the row, both 521 and 5521 are candidates inasmuch as both are indeed prime numbers.

But, look, not 15521; the third option is excessively factorable: 11, 17, 83, 187, 913, and 1411.

Bet on 5521 to be the rightmost component inasmuch as every multiple-place, decimal number ending in 5 is excessively factorable by definition.

And so on.

211522595746872548992633581575279593487457516829281243991682717419125959213927679613484751497352457363329377818952125499377274315521
...52259574687254899263358157527959348745751682928124399168271741912595921392767961348475149735245736332937781895212549937727431....
.........74687254899263358157527959348745751682928124399168271741912595921392767961348475149735245736332937781895212549937727.......
..............25489926335815752795934874575168292812439916827174191259592139276796134847514973524573633293778189521254993...........
....................26335815752795934874575168292812439916827174191259592139276796134847514973524573633293778189521.................
.......................358157527959348745751682928124399168271741912595921392767961348475149735245736332937781......................
.............................5279593487457516829281243991682717419125959213927679613484751497352457363329...........................
.................................593487457516829281243991682717419125959213927679613484751497352457.................................
....................................4874575168292812439916827174191259592139276796134847514973......................................
..........................................516829281243991682717419125959213927679613484751..........................................
................................................281243991682717419125959213927679613................................................
......................................................99168271741912595921392767....................................................
.........................................................6827174191259..............................................................
.............................................................174191259..............................................................
.................................................................91259..............................................................

 

146,853 Homophonic Prepper-Primes-Puzzles by Francis Gurtowski

This is yet another serious, serious series of 999 books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

Once again, each of these sequels takes full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

The concept is simple enough.

Each puzzle consists of a sparse 45x45 block of alphabetic text which you have to translate into a sparse 45x45 block of decimal text.

Replace each letter A-Z with a digit 1-9.

A prime number is a school-boyish counting number with exactly two factors, namely 1 and the number itself.

If you accept the premise that a prime number is analogous to a word, then a Homophonic Prepper-Primes-Puzzle is a counterpart of a crossword puzzle with certain cosmetic deviations, namely

(a) the free-range layout of the resulting niches of the puzzle was not predetermined by an articulated grid,

(b) the clues, such as they are, which is not much, are statistical rather than literary, and

(c) the puzzles are not topical whatsoever; the common theme of one and all is prime numbers per se.

Be advised that in order to make your decryption experience even more challenging - and thus much, much, much more rewarding - than it would ordinarily be, there is a catch in my approach to my separate encryptions of the 45x45-square, open-plan crosswords.

Not content to simply substitute precisely one ciphertext letter per plaintext letter (decimal digit), I instead more or less arbitrarily substitute one or more ciphertext letters for each plaintext letter (decimal digit).

So I do not use a simple substitution cipher.

I instead resort to what is called homophonic coding.

According to Merriam-Webster, a homophone is one of two or more words pronounced alike but different in meaning or derivation or spelling - such as the words to, too, and two.

Conventual homophonic coding not only camouflages but also distorts the patented statistics of the English language, which are common knowledge amongst Scrabble aficionados.

The decimal-digit statistics of the prime numbers are yet to be patented.

With a simple substitution cipher, if the respective frequencies of the plaintext crossword approximate normality then the same will be said of the ciphertext crossword - only spread differently.

A simple substitution cipher is comparatively a piece of cake to attack with paper and pencil.

Homophonic encoding, on the other hand, is absolutely a beast.

A Specimen of the Ciphertext

Across

LWYDJH TZDTFS M  LRCTHC  O MQBO UTVTBH   VAMX
  VGOTZO Q  IRCJJB M OIDWAW V K Q  M    U  Q 
KJDWBG DUSNQO F  TTZLZJ  W OWCJIO  M  AMKZKP 
 MME AEJPZ  OZFFRT  YGCTKB I  D FFTGOX  K UXN
YWCZFP CBJJYP A  DIOBP F KJJWIX W  I B  M Q Q
 L G N WRG  SDGWMO  KFFWYG F  JWEAXC W  STYRE
 P  G L S O  N    A D  F         Z  NPUUP U H
 HAGSIX  YQMLOS QLPMHS MTBJAN CFWGXG F U QPVG
O R C YDPMO C VAH T  CIN F V  K  B  LGCNHS B 
H Z U M  V KVUF U T UCN  E PMJVG O  H  U NATZ
AAEED J  GQYE XWDOWN JJFAUG I V LBWAJG G E O 
J V   GVLSVH  QUPPO  A W E GLCEBW A  ZTWKAX I
IKPJVZ  D L LFZWTC APSRYX   N   WWROKW   N  M
S  R APVLVX U  D T N   J VUCWAN Z N T UBG GWX
 VDBVBX W YOYMVC F A M B  Y T  CMJZVH U T K C
 P C TFFZPE W R  NFCRGH   L     P WYKXP ZTPAG
 U A V  F  VWWLES  JGS NYNQAC  P V IBTWID Z Z
 SVCLHN   P N I  M  P  E  O ZWFOKX N A  MMN  
 V  T JDJVRN  QUULMC NGEQMN D  Z DBEKYO PCJVX
DSBVZ T F PTBQR  W XUJ D B  Z  G A E S   L U 
  O WXEFLD R D VYE M WBPZVP GCFBXH  O OJFDMH 
AVX G V G YCEEX  ONH M   H   D   DGLHYO G CPP
G  KXIWH   L ZQND  IMKSCE OHNIAP  UYO DTJKSO 
XFVD S M QLHOVN NKBCAN F  G  R JZLEFO E AUP K
Q  BTHDLW Y  GOOWHT T VZBEIE I L  H H Y LDFAB
N  D B G XNVG W DJFSCO O  D XJDJMX VWCTNX Z C
ZSXAQX N    Q   O V Z  AKGZZS EVEHCO B C H  A
 DSN JCWCVN NYUFJ ANGDDH  H JTBSTP Q ATJWMX G
NBS   W F MEC  D  X  W      W Y FHREKO V TVFH
GRUX UEFRYN O HZJS OYWCYZ YBEYO YSZS VZATTN  
YDJJO W G JHBP A YQN A H  A W EEXFEP X G U   
HZSZ HKBRAG   TARCHS LJEVQX  I P  Y L    X   
G  E  G N PLCO S OZNVS W  D SIETF UCDVUH  N  
 A H   Q I P H  N B B AYRZTX G G  X H  RKETAW
UAOFXE AVNAF MEBT V W  X  N  A     UJFANS A  
VIW Z  N K Q S  W BCFDN    VDZJQO GIMW PHFCVH
EWFVBB UEUETN Y P  Y  RJVCEF W C Q YRTBUN A  
P CHZPAN A  NJRCXH E  T  X C  HRJDNX YHH XWVN
SWAHKH WJTVIO T H NHWFDH SDRVW T TDSAPH T  W 
NOOUOP    X VMJS   C  M  X S DBQCHH UFCASG W 
 D R YMIROZ OKP MLYSR WWZKGP E OMGOAJ BMDMNZ 
XBWNJG W BHABRG E F Z  J P   Y  T Y EFNGCS P 
 A  W  R V M P  B TLZDKZ  M  MWFCQX L   RQTOW
RPJTVG HCDJHX VMRVH E LGEWVD N Y V  XRWAPP   
    G  C S O    P RCPTGC  P   YPEGAN     ZDAS

Down

L K Y   OHAJIS     D AGXQNZ NGYHG UVEPSN X R 
W JMWLPH  A K VPUSVS V F  SDBRDZ AAIW WODBAP 
YVDMC  ARZEVP D  V BOX V  XSSUJS  OWFCAO W J 
DGWEZG G  E JRBCAC V  KDBDAN XJZEHF VHHURN T 
JOB F GSCUD V V  LTZWGX T Q   O   XZBZKO JWVG
HTGAPN I    ZABTVH  X ISHBXJ U H  E BPHPYG G 
 Z E  LXYMJG PXF NJTEVW D  CWEWKG    A  M    
TODJCW  D  V V F  D F HMLGNW F B QANUNW IWRHC
Z UPBRS P  LDLWZF JFLG  W  CFRGRN V E J R  C 
DQSZJG YMVGS V P  V D  Q X V Y A INKUAT OBVDS
T N J OQO QVLXYE PRP Y LYN NMNJGP A E VXZH J 
F Q Y  M KYH  O V NTRCLH V  E H LPFQT I  AMHO
SIOOPS LCVE LUYWWN B E O GQNCOB C   NNOVOB X 
 R Z DNO U  F M W  QDEZVG  Y  P OHMS J MKRP  
MCFFAG SVFXQZ VRLIQR XQNOW U H T  E YRTJPG V 
 J F W  A WUWDC E U V N O  FDZAAS B  C S   M 
 J R M QHUDPT   S U Y DNWDOJ J R NTWPXH MEBRP
LBTTDO L  OPCTFN MLWEO KHJ   SYCO    H  L  V 
R T I APTTWO   F  M  N BTFVAX QHZBVB  N YFTHR
CMZ O  M  N ANACJ CXMHIC S N ONSN  CYEHCS L C
T LYBKDH U  P  RGP U  MATCZG Y  VBWF  W RZZEP
HOZGPF SCCJAS MGS NJWMKN O DWWALS  D  F   D T
CIJC F  INJ R  H  G B S V  D C J A NRTDMW KLG
 D TFWFMN FWYJB NEEDP CFZOAH YHEWYX J H WJZGC
 W K Y T  A X   Y Q Z E B K  Z V R  V   Z  E 
OAWBKG BFEUE V  N MBVH  E G    Q Z  CXSXKP W 
 W  J  J  G  UYLQON P OGIDZH YAXDTN E D G MVP
M OIJF AVP G C  A     H E Z  B   X VFCRSP  D 
QVW W  N MILNWT CZDZG N  XSJWEW S  D  V      
B C I    J C A   W  CDIRIJ T Y IIGAZW WDEYMN 
OKJDXJ CKVVE N   F  F A  DEBYOE E  J H B  W Y
  I  W F G B  C POZGB PJLJVS  EPTG QCRTQO FYP
UQOFWE W  LWWZMP K  X  Z METFYX F  O J CMTC E
T  F AZGBOB W J VXDAHD L XHPHSF     QDTHG QVG
V  T X X  WARNZW  B  GUEH C RZEYUX G NDHOYX A
TMMGIC G  A O VYINEE LYF VOQESP C UIYXS A   N
B  O  N LHJ KTHKB K OHOOHW  K  LDHJMR AUJELX 
H  XBWPFG GZW  XTAYS Y   CBAOVX V FWTYPF F R 
  A   U C  T UUPW O OODEYT T Z  U A BHHCBN W 
  M   UUNUGW B  I   J T  NCJVAG HRNPUH AMG A 
 UKKMSP H  K GTZDMP FGJALX W T   KSHN TSDCRP 
V Z  T QSNEAN  T MCLD KUD HMTTUX E F X GMSQPZ
A KUQYUP A X GKPZNJ MCSPFZ XVN  NTACAW  N T D
MQPX R VBTO  W A  VUHPO A   F    A V VWWZPO A
X  NQEHG Z IMXCGZ X  P KBCAGH    W H N    W S

The Corresponding Relative Frequencies
Of The Letters Of The Alphabet In A Census
Of The Said Specimen Of The Ciphertext

census

The Corresponding Specimen Of The Plaintext

Across

614113 111119 8  611131  3 8513 612113   2287
  233113 5  511111 8 351121 2 4 5  8    6  5 
411113 169753 1  111611  1 311153  8  284149 
 881 21191  311111  431141 5  1 111337  4 677
411119 111149 2  15319 1 411157 1  5 1  8 5 5
 6 3 7 113  913183  411143 1  111271 1  91411
 9  3 6 9 3  7    2 1  1         1  79669 6 3
 323957  458639 569839 811127 111373 1 6 5923
3 1 1 41983 1 223 1  157 1 2  4  1  631739 1 
3 1 6 8  2 4261 6 1 617  1 98123 3  3  6 7211
22111 1  3541 711317 111263 5 2 611213 3 1 3 
1 2   326923  56993  2 1 1 361111 2  111427 5
549121  1 6 611111 299147   7   111341   7  8
9  1 292627 6  1 1 7   1 261127 1 7 1 613 317
 211217 1 434821 1 2 8 1  4 1  181123 6 1 4 1
 9 1 111191 1 1  711133   6     9 14479 11923
 6 2 2  1  211619  139 747521  9 2 511151 1 1
 921637   9 7 5  8  9  1  3 111347 7 2  887  
 2  1 111217  566681 731587 1  1 111443 91127
19121 1 1 91151  1 761 1 1  1  3 2 1 9   6 6 
  3 171161 1 1 241 8 119129 311173  3 311183 
227 3 2 3 41117  373 8   3   1   136343 3 199
3  47513   6 1571  584911 337529  643 111493 
7121 9 8 563327 741127 1  3  1 116113 1 269 4
5  113161 4  333131 1 211151 5 6  3 3 4 61121
7  1 1 3 7723 1 111913 3  1 711187 211177 1 1
197257 7    5   3 2 1  243119 121313 1 1 3  2
 197 111127 74611 273113  3 111919 5 211187 3
719   1 1 811  1  7  1      1 4 131143 2 1213
3167 611147 3 3119 341141 41143 4919 212117  
41113 1 3 1319 2 457 2 3  2 1 117119 7 3 6   
3191 341123   121139 611257  5 9  4 6    7   
3  1  3 7 9613 9 31729 1  1 95111 611263  7  
 2 3   5 5 9 3  7 1 1 241117 3 3  7 3  141121
623171 22721 8111 2 1  7  7  2     611279 2  
251 1  7 4 5 9  1 11117    211153 3581 931123
111211 616117 4 9  4  112111 1 1 5 411167 2  
9 131927 2  711173 1  1  7 1  311177 433 7127
912343 111253 1 3 731113 91121 1 119293 1  1 
733639    7 2819   1  8  7 9 115133 611293 1 
 1 1 485131 349 86491 111439 1 383321 181871 
711713 1 132113 1 1 1  1 9   4  1 4 117319 9 
 2  1  1 2 8 9  1 161141  8  811157 6   15131
191123 311137 28123 1 631121 7 4 2  711299   
    3  1 9 3    9 119131  9   491327     1129

Down

6 4 4   332159     1 237571 73433 621997 7 1 
1 181693  2 4 296929 2 1  911111 2251 131129 
42181  211129 1  2 137 2  799619  311123 1 1 
131113 3  1 111121 2  411127 711131 233617 1 
131 1 39161 2 2  611137 1 5   3   711143 1123
313297 5    121123  7 593171 6 3  1 193943 3 
 1 1  674813 971 711121 1  111143    2  8    
131111  1  2 2 1  1 1 386371 1 1 527671 51131
1 69119 9  616111 1163  1  111317 2 1 1 1  1 
159113 48239 2 9  2 1  5 7 2 4 2 574621 31219
1 7 1 353 526741 919 4 647 787139 2 1 2713 1 
1 5 4  8 443  3 2 711163 2  1 3 69151 5  2833
953399 6121 664117 1 1 3 357131 1   773231 7 
 1 1 173 6  1 8 1  511123  4  9 3389 1 8419  
811123 921751 216551 75731 6 3 1  1 411193 2 
 1 1 1  2 16111 1 6 2 7 3  111229 1  1 9   8 
 1 1 8 536191   9 6 4 171131 1 1 711973 81119
611113 6  391117 86113 431   9413    3  6  2 
1 1 5 291113   1  8  7 111227 531121  7 41131
181 3  8  7 27211 178351 9 7 3797  141319 6 1
1 641413 6  9  139 6  821113 4  2111  1 11119
331391 911129 839 711847 3 111269  1  1   1 1
1511 1  571 1  3  3 1 9 2  1 1 1 2 711181 463
 1 111187 11411 71119 111323 431147 1 3 11131
 1 4 4 1  2 7   4 5 1 1 1 4  1 2 1  2   1  1 
321143 11161 2  7 8123  1 3    5 1  179749 1 
 1  1  1  3  646537 9 335113 427117 1 1 3 829
8 3511 229 3 1  2     3 1 1  1   7 211199  1 
521 1  7 856711 11113 7  791111 9  1  2      
1 1 5    1 1 2   1  115151 1 4 553211 111487 
341171 14221 7   1  1 2  111431 1  1 3 1  1 4
  5  1 1 3 1  1 93131 916129  1913 511153 149
653111 1  611189 4  7  1 811147 1  3 1 1811 1
1  1 213131 1 1 271231 6 739391     51133 523
2  1 7 7  121711  1  3613 1 111467 3 713347 2
188351 3  2 3 245711 641 235199 1 65479 2   7
1  3  7 631 41341 4 333331  4  613181 261167 
3  711913 311  71249 4   112327 2 111491 1 1 
  2   6 1  1 6691 3 331141 1 1  6 2 133117 1 
  8   667631 1  5   1 1  711223 317963 283 2 
 644899 3  4 311189 131267 1 1   4937 191119 
2 1  1 597127  1 8161 461 381167 1 1 7 389591
2 465469 2 7 349171 819911 727  712121  7 1 1
8597 1 2113  1 2  26393 2   1    2 2 211193 2
7  75133 1 587131 7  9 411233    1 3 7    1 9

The Corresponding Solution

solution

 

HPPP01 HPPP02 HPPP03
HPPP04 HPPP05 HPPP06
HPPP07 HPPP08 HPPP09
HPPP10 HPPP11 HPPP12
HPPP13 HPPP14 HPPP15
HPPP16 HPPP17 HPPP18
HPPP19 HPPP20 HPPP21
HPPP22 HPPP23 HPPP24 //a>

146,853 Homophonic Zenophilic Prepper Puzzles by Francis Gurtowski

This is yet another serious, serious series of 999 books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

Once again, each of these sequels takes full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

The concept is simple enough.

Each puzzle consists of a sparsely-populated 45x45 block of alphabetic text which you have to translate into a similary sparsely-populated 45x45 block of decimal text.

Replace each letter A-Z with a digit 1-9.

According to Merriam-Webster, a xenophile is one attracted to foreign things; by extension, a xenophilic representation of a number is comprised of exclusively different digits.

A zenophilic number does not repeat any digit:

0, 01, 012, 0123, 01234, 012345, 0123456, 01234567, 012345678, 0123456789, 012345679, 0123456798, 01234568, 0123456879, 012345689, 0123456897, 01234569, 012345697, 0123456978, 012345698, 0123456987, 0123457, 01234576, 012345768, 0123457689, 012345769, 0123457698, 01234578, 012345786, 0123457869, 012345789, 0123457896, 01234579, ... 9876543210.

Contrast that with a prime number, which is a counting number with exactly two factors, namely 1 and the number itself.

Zenophilic numbers are easier to deal with inasmuch as one can readily tell a zenophilic number at a glance.

Prime numbers, on the other hand, lack visible cues identifying themselves as such.

Perhaps the most amazing fact about zenophilic numbers is that there is but a modest, finite number of zenophilic numbers, merely 6,598,180 of them in the entire universe.

If you accept my premise that a zenophilic number is analogous to a word, then a Homophonic Zenolithic Prepper Puzzle is a counterpart of a crossword puzzle with certain cosmetic deviations, namely

(a) the free-range layout of the resulting niches of the puzzle was not predetermined by an articulated grid,

(b) the clues, such as they are, which is not much, are statistical rather than literary, and

(c) the puzzles are not topical whatsoever; the common theme of one and all is zenophilic numbers per se.

Be advised of the fact that I do not use a simple substitution cipher.

I instead resort to what is called homophonic coding.

According to Merriam-Webster, a homophone is one of two or more words pronounced alike but different in meaning or derivation or spelling - such as the words to, too, and two.

Conventual homophonic coding not only camouflages but also distorts the patented statistics of the English language, which are common knowledge amongst Scrabble aficionados.

The results of a census of the decimal digits of the zenophilic numbers: there are precisely 5,611,771 of each digit 0-9.

With a simple substitution cipher, if the respective frequencies of the plaintext crossword approximate normality then the same will be said of the ciphertext crossword - only spread differently.

Not that there is any spread here whatsoever.

A simple substitution cipher is comparatively a piece of cake to attack with paper and pencil; homophonic encoding, on the other hand, is absolutely a beast.

A Specimen of the Ciphertext

Across

KBYDUVZWJ CH AOVECRSPGM RAUMEDVLZK BNJDUZYOQF
SF ANSEGZDFKT VGFSZK CXIUFPKJQY PUKZYMGBNW FL
FONUPW S QNFZHUXOTJ XTUEGZFDKV OAQG ACWFRUOJN
ANSOQTCHL OTVLXUCMW LHCFKQYVSX LRAFIWUOH ZLAR
YWJMXZHOI BQLO RHAFQIKLC S QA LTVZDXMQU DLMZK
ZPYJFKWAUN VQTOZUPALF  JXOUZVEYPM ZSKRI EOUDZ
ECMYKAUV  RZPES GV  EMB MGD DNZSOG LSKZNFHWYB
LUQC GYZWIOXU PUXKMWTCNL DR TDNWGM EGNB RMXOE
VYBQ DOMVZ SFVBHYGWZK FRSNBHZJ BSNQYD YOZBVSD
HGKI FIRDKQJBSC    LP LEPRZOF SZWA OZB JAVZ S
  D D A U   KTIMDWJXZU SI OV ELN TSP ZYBO TB 
UWZNYJMPBO   DWVUJF UDZOWFNLXR MAU MQNBCJRHKU
AU WUKJ J QYIC   IYW ZKP UM KUZ HKB YEIMUL ZV
CAYPKF ECOD KMARDUWICL  VBJMECUYKH MKPWUVCAJY
NGDFWZR  GTUWAKZFH FJYCOXPQNU PKMCXYVSGW SWFG
OYNZLUHM MB ZJPNSYEBKF DY   NK IYWKHMJ TIWLSH
GKBSFWCN VCLBQ   ZKUYB ZQMROPNAUG MWPR PSKZ W
DMSAZRNK TIB OXISFJCPET UCFVLAOHWR XGMKV MNZK
QCMLVDXT SKVJ PON HTIKUB KH CM CS RGUKF HIOA 
FDJRANOSEZ WFPCXOYU AIZKPSJEMR LVRQUX XZVPSGR
YICO XFJVPYCKEU B TPF KDUGXIYCFQ KGVZMURQAP Q
  E A UZKX YSBIKLPCFE B ZAEF   M FHO DCAK FSV
VRKAZPLW EXUNLKPCYF U NFKWZYDJUB Z CERL XLYFK
EH RFVQPA RKH  TDJ X FGQR  XMCN PNF GCIWMB JA
SMDCRK XO CDAQOJRUMN NEBFJCOYUP MU MZSW UIFY 
ZUX DAT RN FQRJV BOUEDMNJ BCK C ZXUE AT JSZOT
GZO VZGFDUY ZJREA C NZHYAE SBTG LQASMVHZRO CH
KGQ JESVMC CR UCDRWKBG KICAPQLTMS NLYE TCMPIO
DKYCSFIEJX R AMSKEDNJRC QFYLUCAHVK COLWX CJQA
TI FOUXCWH KC ZMYBIPSEGO SC ZPMLTNWBSK H YEDS
MAKVELZHUT MYSHB   ADUYWCOFGN O KP KJ RMSWVAJ
BWVU TOACMHSWGN CSRFOXNLEH ALHE XW RQD NBPZ  
  TBH EKNL XIYWLMK WZOMIXJHY   TQCSDBOMLN YKJ
ZALKYNHS KTHB BVUZDG  B NY H OTD   NHZ OMJARZ
UZHJNOFTXW VGK OYXVUCPQFL QUAPLFCOT IGSEDTMZX
LHZT J LR IJOCSDQ ZRXWUJMNPK LNKTBUPCFQ CNODY
XVSQFPO CTDQSAM PBMZTUOE SGCM WCNTJS TI JZSNP
YEMDJSCN SQ HVTCBKW U DRWBZMKIUG HMCXUY QF QI
ORA HFIZ AYCMJKWNHS OC SCWOVJ DIQ EYJBK YOLUM
MLQ ERUJ QZI FXNOLYQ TVOPZAQU ASRQVO EA KDWMU
HM NTQAM KFSZTEL VKGZMTPA Y XZFQDLOV IPU QIAO
WOI IBM TJKENSDXFZ DLSKCRIFXE CBJ CMJ FDCBRJW
ISMPKCWY ILFDQCOURA IHMXK VOZ O OEPXF ZVMUA  
  LRZ DE MSXKPLRNW XTJPNS UZRJ WFTBJC LFK URV
WHSIAML KCARJ IHRFCLSKW G  WPSGRCX QXY ELBCFT

Down

KSFAYZELVH UACNOGDQFY VESZGKDTMB ZULXYOMHWI W
BFONWPCUYG WUAGYKMCDI RHMUZGKIAW AZHVERLMOS H
Y NSJYMQBKDZ YDNBSMJCEK DXOQY KVTLHZSMAQ IMLS
DAUOMJYCQI NWPFZSALRO ARC   CFVUBKJTQD  N PRI
UNPQXFK   DYUKWLFZVA AZFRDVJSOE HYN FJHETIKZA
VSWTZKAGDF JKFZUWRDNX PVKAZEFULT NOJPSFRQBC M
ZE CHWUYOIAMJ RHCNXOFULQ TGSIXZOEHF OCIUAMWDL
WGSHOAVZMR P E MNKTSJZWPX FVECHAKSTL NZJM YE 
JZ LIU WVDUBJC     EVK AORDMJWUCN XRC    T  K
 DQ  N IZK O OGMVTSZPXE  NUCXHTMLKW TSAQKJIMC
CFNOB RO Q  QDTBCIK Y XRC Y    H T IDQYZFKLSA
HKFTQVZXSJ  Y U LBVWCYUKDF CRKMSXHVJQ CISEFXR
 TZVLQPUFBK IKWZB JFKSNHAQZR CYWIBGOSHM ZNDKJ
A HLOTE VSTDCMAJQO PEBL QRJ A SGY KCAVJFTSQP 
OVUX OSPBCIW AKP XPCUIK OJRUMZHNWB SMTKXEDCLI
VGXURZ UH MV RZN IOX KPTJVECSMB LVOD CWNLXORH
EFOCHUGXY DU DFS SNOBLCDR ADKY CMUYQPBNO FUNR
CSTMAPVKG WJIUHYZF Y PYJUB REB SKZX BKHLVZRWF
RZJWFA MW JFYW EKJHUTCF MOCWDI R DVZMWSYK A C
SK  QL WZLX WIFBUCT PF XNU KNPAFWGURZ  QGD XL
P XLIFETKPZU CJKYPIAFEU  ENBJSDOZ CXTUO ZLITS
GCTHK MC  UDZLYFBEKI   FNDZGREUXO PWU CTMSHJK
MXUCL BNFL ZK C  TUZKBNGEMH CGYNMBQUOD VTKMPW
 IEFCJ LRESOP ODZ BKD FQBNYK OWLI FJERSOPCXN 
RUGK XM SPIW VXYQU PUZKRFJAIQ CEXNLM WCPARKSG
AFZQSOGDNR FUBP MCKSGAW J ECFSOHJY NSBWZ I   
UPFY UDRBZONMJQ RFHJXEZ CB AYCF H QPGZOAYFVU 
MKDVQZ  HOVL MN OV EIFYXOCSPL GAYHUKCMVQ XOZW
EJKSAVDTZF XKEUNPLCMY DMYKBQUZNL  A MKJUXEZRP
DQVX ENDJ ERUC KNAMRC JCU TLCP H OPL I  Z  JS
VY  LYZN SL ZUP AO  F UNPCGTAMOE TLNWUDAFCO G
L OLTPSWBZNM YKIUHCLQMB    MHL  TDFKCGISQB WR
ZPARVMOGSW AHKMYGWSV   PMZLSVTKXQ CTN QRDJOFC
KUQAZ GMNATUKHCW R RKFZNUXQ KNPWC OBTH QL ETX
 KGFDZ  Q S B XKM RQGH F UAN W  S TUJMEVOCPB 
BZ IXSLEYOPM MYHWXGUVOC MESLCBKRDN PSCYOVMXJQ
NYAWMKSGDZ QYKVMPGUXZ EGZ MYOSJQBHIC XJ  JFCX
JMCUQRKN BZNEPSJRMK MDRCSAVELK DOZGFTUBEI   Y
DGWOUIZBY YBIWG  KFXUCLIWTH W R M SQIYKAPFZL 
UBFH  N OJBCMUWTPV ZRA W  ZTXHMNLOE     UDVFE
ZNR DEFRZAOJUV IS HVQKXMUJRC  SBNMDCJQYK CMKL
YWUZLOHMBV RLCSWKMIPA LBISOMCYWP JTNZFODQBU B
O OLMUWXVZTH AWLZNOSPFY FZ PJEVZYAMOS LWIRAUC
QFJAZDYOS BKZJFS ZAG SFJYOCIQDA KRZDNQUMAJ RF
FLNRKZBEDS UVYGHWK RQVKA THOASJ JZXYPIMUOW VT

The Corresponding Relative Frequencies
Of The Letters Of The Alphabet In A Census
Of The Said Specimen Of The Ciphertext

census

The Corresponding Specimen Of The Plaintext

Across

470132698 61 7429603185 0735912864 7281360495
35 7239861540 285364 6723514890 1346058729 58
542319 3 9256137408 7039865142 4798 769503482
723490618 402873659 8165490237 807529341 6870
098576142 7984 017592486 3 97 802617593 18564
6108549732 2904631785  8743629015 63402 94316
96504732  06193 82  957 581 126348 8346251907
8396 80692473 1374590628 10 012985 9827 05749
2079 14526 3527108964 50327168 732901 0467231
1842 5201498736    81 8910645 3697 467 8726 3
  1 1 7 3   4025198763 32 42 982 031 6074 07 
3962085174   192385 3164952870 573 5927680143
73 9348 8 9026   209 641 35 436 147 092538 62
670145 9641 4570139268  2785963041 5419326780
2815960  803974651 5806471923 1456702389 3958
40268315 57 6812309745 10   24 2094158 029831
84735962 26879   64307 6950412738 5910 1346 9
15376024 027 4723586190 3652874190 78542 5264
96582170 3428 142 102437 41 65 63 08345 1247 
5180724396 95167403 7264138950 820937 7621380
0264 7582106493 7 015 4138720659 4826530971 9
  9 7 3647 0372481659 7 6795   5 514 1674 532
20476189 9732841605 3 2549601837 6 6908 78054
91 052917 041  018 7 5890  7562 125 862957 87
351604 74 6179480352 2975864031 53 5639 3250 
637 170 02 59082 74391528 764 6 6739 70 83640
864 2685130 68097 6 261079 3708 8973521604 61
489 893256 60 36109478 4267198053 2809 065124
1406352987 0 7534912806 9508367124 64897 6897
02 5437691 46 6507213984 36 6158029734 1 0913
5742986130 50317   7130964582 4 41 48 0539278
7923 0476513982 6305472891 7819 79 091 2716  
  071 9428 7209854 964527810   0963174582 048
67840213 4017 723618  7 20 1 401   216 458706
3618245079 284 4072361958 937185640 283910567
8160 8 80 2846319 6079385214 8240731659 62410
7239514 6019375 17560349 3865 962083 02 86321
09518362 39 1206749 3 1097654238 156730 95 92
407 1526 7065849213 46 369428 129 90874 04835
589 9038 962 5724809 02416793 730924 97 41953
15 20975 4536098 24865017 0 76591842 213 9274
942 275 0849231756 1834602579 678 658 5167089
23514690 2851964307 21574 246 4 49175 62537  
  806 19 537418029 708123 3608 950786 854 302
9132758 46708 210568349 8  9138067 970 987650

Down

4357069821 3762481950 2936841057 6387045192 9
7542916308 9378045612 0153684279 7612908543 1
0 2380597416 0127358694 17490 4208163579 2583
1734580692 2915637804 706   6523748091  2 102
3219754   1034985627 7650128349 102 581902467
2390647815 8456390127 1247695380 2481350976 5
69 6193042758 0162745389 0832764915 462375918
9831472650 1 9 5240386917 5296174308 2685 09 
86 823 9213786     924 7401589362 706    0  4
 19  2 264 4 4852036179  2367105849 037948256
65247 04 9  9107624 0 706 0    1 0 2190654837
1450926738  0 3 8729603415 6045371289 6239570
 0628913574 24967 8543217960 6092784315 62148
7 18409 2301657894 1978 908 7 380 4672850391 
4237 4317629 741 716324 4803561297 3504791682
287306 31 52 062 247 4108296357 8241 69287401
954613870 13 153 32478610 7140 653091724 5320
630571248 98231065 0 10837 097 3467 741826095
068957 59 8509 94813065 546912 0 12659304 7 6
34  98 9687 9257360 15 723 4217598306  981 78
1 7825904163 6840127593  92783146 67034 68203
86014 56  3168057942   5216809374 193 6053184
57368 7258 64 6  0364728951 6802579341 204519
 29568 809341 416 741 597204 4982 5890341672 
0384 75 3129 27093 1364058729 697285 96170438
7569348120 5371 5643879 8 96534180 23796 2   
3150 3107642589 0518796 67 7065 1 9186470523 
541296  1428 52 42 9250746318 8701346529 7469
9843721065 7493218650 1504793628  7 548379601
1927 9218 9036 427506 863 0861 1 418 2  6  83
20  8062 38 631 74  5 3216807549 0829317564 8
8 4801397625 0423168957    518  0154682397 90
6170254839 714508932   1568320479 602 9018456
43976 8527034169 0 04562379 42196 4701 98 907
 48516  9 3 7 745 0981 5 372 9  3 0385924617 
76 273890415 5019783246 5938674012 1360425789
2079543816 9042518376 986 5043897126 78  8567
85639042 7629138054 5106372984 1468503792   0
189432670 07298  4573682901 9 0 5 3920471568 
3751  2 4876539012 607 9  607152849     31259
620 1950674832 23 1294753806  3725168904 6548
0936841572 0863945217 8723456091 8026541973 7
4 4853972601 7986243150 56 1892607543 8920736
958761043 746853 678 3580462917 4061293578 05
5820467913 3208194 09247 014738 8670125349 20

The Corresponding Solution

solution

 

HPPP01 HPPP09 HPPP17
HPPP02 HPPP10 HPPP18
HPPP03 HPPP11 HPPP19
HPPP04 HPPP12 HPPP20
HPPP05 HPPP13 HPPP21
HPPP06 HPPP14 HPPP22
HPPP07 HPPP15 HPPP23
HPPP08 HPPP16 HPPP24

146,853 Ciphertext Prepper-Puzzles by Francis Gurtowski

This is yet another serious, serious series of 999 books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

Once again, each of these sequels takes full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

The concept is simple enough.

Each puzzle consists of a sparsely-populated 45x45 block of alphabetic gibberish which you have to translate into a similary sparsely-populated 45x45 block of crossed words.

Replace each letter A-Z with another.

A Ciphertext Prepper-Puzzles is a crossword puzzle with certain cosmetic deviations, namely

(a) the free-range layout of the resulting niches of the puzzle was not predetermined by an articulated grid,

(b) the clues, such as they are, which is not much, are statistical rather than literary, and

(c) the puzzles are not topical whatsoever; the common theme of one and all is letter substitution per se.

Be advised of the fact that I do not use a simple substitution cipher.

I instead resort to what is called homophonic coding.

According to Merriam-Webster, a homophone is one of two or more words pronounced alike but different in meaning or derivation or spelling - such as the words to, too, and two.

Conventual homophonic coding not only camouflages but also distorts the patented statistics of the English language, which are common knowledge amongst Scrabble aficionados.

With a simple substitution cipher, if the respective frequencies of the plaintext crossword approximate normality then the same will be said of the ciphertext crossword - only spread differently.

A simple substitution cipher is comparatively a piece of cake to attack with paper and pencil; homophonic encoding, on the other hand, is absolutely a beast.

A Specimen of the Ciphertext

Across

PRXIQIXMUIWYS PMXCHS PRHCYXEVJM M NFGLZQFWBZH
GH D    E RRE GKR  ODW R   R WJ QHWZ R H  E  
FALCHRUIGYUECWFGNIRY IJPFIXAUDAQQZHZYUIMUIGY 
VRHY  Z H     V A X   R  X H Z  ANN  C X    U
X GUUGJRY PAP YRYWUCXEYGFGNV H  H GTM  U  MXC
EJ I  P  P  E O N S  G LRSC RYDMJMYRYDYAXWLMH
FG Q TZR A  WHX    QMLHIXMYU PRPM A M  W  WBC
GJYIDIHZXUIGYRFHRYNC W S E ZVCFCU MDD  Y P  P
H  X URH E EGJZ Q C R    Z FIYC AYY ZSUMLFISE
IQ MYCJGYZS F GMQISEFV GDDJZYUS K SAJ  F Z  U
YM U  Z  X LGOU C U R A  HZJ R  Z   S  FRD CE
ML IHWYXFRD NEI XHAL MSUHGYMOUAXRFFV  LV   QR
U  G  UCCY  I DIU XML G  Y H E  X R TAH AXE F
CJ Y LMFMUR X C ZJOS ZFD SOT FRSU L G V J   A
DZ SE F  E UMD  D F  FR C PZSW  A  XEAXTPZR X
LRM G  A H  F  N  R   L P  URY EWBF F Z GBY R
AYUCHYMUIGYMFPEGYZUAXRFPEMLZU   YO L  XMKZD X
P U SRFU P LVZ VW Z  LC G  HCYDS D W  MNC   A
EWZ CZFV A L U  Y   JV  D P  W  K AYXAYZHMUZD
ZDS P W AYDCQAYMLFZYZSS  LMLOSETM  N  V A  M 
YRUIWYBIDC SZU  Z   MJOXT I  A  FRLWHAWOSYCSS
V C BWZS  RSDAX FMXCD Q R Y  YRPC M R YUE  Z 
F HGZ DGFF Z G  A  D RQQZXUIYN GD X A YRJ L O
  SAH  P GDS YGLCFAOJ O  W    SEIHTCD M C IXT
U  F TWI D  PAS K  X  S  Y   R  X X   UAY G M
CUEVFZYZDIRJIYZUCUHRMXCUAXMXAD SURHXE IXUOSCS
H    FZS X   N  H  U  D  E   J  G W RFWZS W Z
H  F P U O  S  S O A D DAS NRAYZH SZDRY   X  
MHUAQAXIMFIYUZFFINZYXZ M  JWHY  AUS  UMLFGADS
Y  L Z X C  R  R E N RXEHWJRUIX ZHZXU F   M G
GQQCYSC RSP L  J  N  F     U S  SWS A PMLOFOJ
KCZH   D  R  UWJMERBTIYN   A U Q P  SURSAS D 
RYUMHXUAXMHXEAPCFMNW YCWXWYSZHKMUIKC  HEW  D 
Y  U  WS HCI Z H Q   N DRL E RIF X RJWT SRLCH
RXEAZH X X U PGSAUIKISJ LRD ZUMS G N R U R H 
U  G M G U H I  H  G  C I O  I A Q CRH R F S 
ADCYUAQIXMUAGYXRHD XGJJRYDAYNGQQAXCH  RPW X  
G  U   D Y X  M AGUR R  C  IGY A M  YCPZYUEZS
Y  E H   N  GPPONY F X  URLFZS MSPIX  P S W  
MDECSIKZYCSS H  R QICHXZH M S  L H OJFROU H  
F  GHL JOY   G  U  S W  A L  U F I S  F M ZS 
PRHFIRJZYURHVNGKCHYJCYU ZFZXUHGCYXZPEMFWNHMPE
RR G F  S T  C  D     RRS  FIMH  GHR  A Z  C 
H CNMD   RA  Y     JOJ I   MXXZFZHRUIWYS   M 
T  V  RQQIYIUVXEHWJMUWNHMPEV C   Y Z  NALLZHS

Down

PGFVXEFGHIYMUCDLAPEZYVF UCHHMYGKRYRUAGYMFPRHT
RHAR JGJ QML JZRY WDR    U  H QCY X D  D RR  
X LHG  Y       MUUZSUCHS E  U QZU E C  E H C 
IDCYUIQIXMUIGYS C   I GAFV FALCHMUAGYUECGFGNV
Q H U  D Y H  EGHSCPWBZH F  Q Y H Z U  SHI M 
I R G TIUC W L  YRZ YW  TZFPAZS X HMA HILRFD 
X UZJPZHRJZYUMF MFFWBZD WYZ X C UW  Q  K J  R
M I R RZHG XCF AUUV ISGPIZSUIX DASXGID ZJZ  Q
UEGHY  X Y FCM  I  AD F  D  M R X   X  YOYS Q
I Y  PAUEZXRYUEHGPAYC FGDIXOFCS MHXUMYNCYU RI
WRU P  I S D R  Y  D R D R  I PRHC  U  S RTAY
YRE A  GE L   U MLLCSSZS J  Y   XIUHAX S H  I
SEC PEWYGFGNIXMFFV QZD  PI SURL E   G G  V  U
  W   HRJ OE  D PZUAUAGYAYN Z  UAZPIY PHGNCYV
PGFVYOXFZGUIDC  E  Y X GSZ  F  WP G XMP  G  X
MKG R  H M  I  NGV M   L U SFRJJCHS R O  K  E
XRNAYN RQQCXUZD YWYLZFACKCH I  MF AHHANRUCD H
C I W  Y I H J  Z  F M F U ONE EMQU DGY  H  W
H RXUS NCSUAXOFRUZ Z X A H  Z NRN I  U Q Y  J
SOY C QC E LMS  A  Y CDOXRUAYN BW KGXRFISJ JM
 D  X M RFR L   X JZMD J M  X  T  I G  C C OU
PWI EGLW V M ZF RLVSJ R  X DZRFIYNS JRXHWY JW
R JRY H   ASGFRLFC SOQQOSCD  X YC JCJ  X UR N
HRP GLIS G U D  P   X Q  U DME NWD  R  Z  RIH
C F FRX  D H  CPEGD TRZ  A A H  XRLIYCUHAZS M
Y IXGSMEZDHGYS  M  L  XWYXES W  WLR D R  F  P
X X NCY  JZY OP L PMIYU  M  JJ  Y DOA LMLZ  E
ERAHV UZFZJMHTZUZH L  I  X NWRUASE  YIF  XFMV
V U  R VIY O  SRUC O  Y  A RHU  Z Z NGZS UIX 
JWDZHYPCYURUEFWY YWSAYN RDJAYISUHRUIGYS UHMXC
MJA  DRFCS A R   D E R S   Y X  KIM Q    GHZ 
  Q  MPC   X S E S T PGE S Z   QMFSAQAMLFC F 
MQQAHJMUAKZRXUAWY KMFCDIXUGHAZS U   A S  Y Z 
 HZN M  Y  F   BOD  R  H R  UHWPIXGQXMPHIXGHY
NWHNGYAMYS FRL F  A LMXTXHWSSZS K   C I  ZHR 
FZZ TR D A V  X LWYNW  C X Z X  CRNCH XOSPRUZ
G Y MYMDZJS TGEF  X HRAD ERD UAS J R Y J E I 
LRUC D  S   A A   A A     FRU  U WRH C F M W 
Z I  Y  U  LHVXZXMYVWYYMUIWYMFPRHT  RPPRFFAYN
QHMXUAWYMFFV  T MNZ OUR AXZ L MSE URPZ O W SA
F U  X  L R AJPGKCHASEJCYUS F LAWS  WYSUMNZ L
W I  W PFZD X ZBZ M Y    O  G OS RRF U   H  L
BEG MLW I   E RYD U C LIGSWXAMF  L  XEWHZM  Z
Z Y XMB S CQ      ZMSZ X C  D ODDCHS Z  SPCMH
H  UCHCPEUERFAXRXAD S OTMSZ SGJ  H   S   E  S

The Corresponding Relative Frequencies
Of The Letters Of The Alphabet In A Census
Of The Said Specimen Of The Ciphertext

census

The Corresponding Specimen Of The Plaintext

Across

PACIFICATIONS PACERS PARENCHYMA A GLOBEFLOWER
OR D    H AAH OVA  UDO A   A OM FROE A R  H  
LIBERATIONTHEOLOGIAN IMPLICITDIFFERENTIATION 
YARN  E R     Y I C   A  C R E  IGG  E C    T
C OTTOMAN PIP NANOTECHNOLOGY R  R OKA  T  ACE
HM I  P  P  H U G S  O BASE ANDAMANANDNICOBAR
LO F KEA I  ORC    FABRICANT PAPA I A  O  OWE
OMNIDIRECTIONALRANGE O S H EYELET ADD  N P  P
R  C TAR H HOME F E A    E LINE INN ESTABLISH
IF ANEMONES L OAFISHLY ODDMENTS V SIM  L E  T
NA T  E  C BOUT E T A I  REM A  E   S  LAD EH
AB IRONCLAD GHI CRIB ASTRONAUTICALLY  BY   FA
T  O  TEEN  I DIT CAB O  N R H  C A KIR ICH L
EM N BALATA C E EMUS ELD SUK LAST B O Y M   I
DE SH L  H TAD  D L  LA E PESO  I  CHICKPEA C
BAA O  I R  L  G  A   B P  TAN HOWL L E OWN A
INTERNATIONALPHONETICALPHABET   NU B  CAVED C
P T SALT P BYE YO E  BE O  RENDS D O  AGE   I
HOE EELY I B T  N   MY  D P  O  V INCINERATED
EDS P O INDEFINABLENESS  BABUSHKA  G  Y I  A 
NATIONWIDE SET  E   AMUCK I  I  LABORIOUSNESS
Y E WOES  ASDIC LACED F A N  NAPE A A NTH  E 
L ROE DOLL E O  I  D AFFECTING OD C I NAM B U
  SIR  P ODS NOBELIUM U  O    SHIRKED A E ICK
T  L KOI D  PIS V  C  S  N   A  C C   TIN O A
ETHYLENEDIAMINETETRAACETICACID STARCH ICTUSES
R    LES C   G  R  T  D  H   M  O O ALOES O E
R  L P T U  S  S U I D DIS GAINER SEDAN   C  
ARTIFICIALINTELLIGENCE A  MORN  ITS  TABLOIDS
N  B E C E  A  A H G ACHROMATIC ERECT L   A O
OFFENSE ASP B  M  G  L     T S  SOS I PABULUM
VEER   D  A  TOMAHAWKING   I T F P  STASIS D 
ANTARCTICARCHIPELAGO NEOCONSERVATIVE  RHO  D 
N  T  OS REI E R F   G DAB H AIL C AMOK SABER
ACHIER C C T POSITIVISM BAD ETAS O G A T A R 
T  O A O T R I  R  O  E I U  I I F EAR A L S 
IDENTIFICATIONCARD COMMANDINGOFFICER  APO C  
O  T   D N C  A IOTA A  E  ION I A  NEPENTHES
N  H R   G  OPPUGN L C  TABLES ASPIC  P S O  
ADHESIVENESS R  A FIERCER A S  B R UMLAUT R  
L  ORB MUN   O  T  S O  I B  T L I S  L A ES 
PARLIAMENTARYGOVERNMENT ELECTROENCEPHALOGRAPH
AA O L  S K  E  D     AAS  LIAR  ORA  I E  E 
R EGAD   AI  N     MUM I   ACCELERATIONS   A 
K  Y  AFFINITYCHROMATOGRAPHY E   N E  GIBBERS

Down

POLYCHLORINATEDBIPHENYL TERRANOVANATIONALPARK
ARIA MOM FAB MEAN ODA    T  R FEN C D  D AA  
C BRO  N       ATTESTERS H  T FET H E  H R E 
IDENTIFICATIONS E   I OILY LIBERATIONTHEOLOGY
F R T  D N R  HORSEPOWER L  F N R E T  SRI A 
I A O KITE O B  NAE NO  KELPIES C RAI RIBALD 
C TEMPERAMENTAL ALLOWED ONE C E TO  F  V M  A
A I A AERO CEL ITTY ISOPIESTIC DISCOID EME  F
THORN  C N LEA  I  ID L  D  A A C   C  NUNS F
I N  PITHECANTHROPINE LODICULES ARCTANGENT AI
OAT P  I S D A  N  D A D A  I PARE  T  S AKIN
NAH I  OH B   T ABBESSES M  N   CITRIC S R  I
SHE PHONOLOGICALLY FED  PI STAB H   O O  Y  T
  O   RAM UH  D PETITIONING E  TIEPIN PROGENY
POLYNUCLEOTIDE  H  N C OSE  L  OP O CAP  O  C
AVO A  R A  I  GOY A   B T SLAMMERS A U  V  H
CAGING AFFECTED NONBELIEVER I  AL IRRIGATED R
E I O  N I R M  E  L A L T UGH HAFT DON  R  O
R ACTS GESTICULATE E C I R  E GAG I  T F N  M
SUN E FE H BAS  I  N EDUCATING WO VOCALISM MA
 D  C A ALA B   C MEAD M A  C  K  I O  E E UT
POI HOBO Y A EL ABYSM A  C DEALINGS MACRON MO
A MAN R   ISOLABLE SUFFUSED  C NE MEM  C TA G
RAP OBIS O T D  P   C F  T DAH GOD  A  E  AIR
E L LAC  D R  EPHOD KAE  I I R  CABINETRIES A
N ICOSAHEDRONS  A  B  CONCHS O  OBA D A  L  P
C C GEN  MEN UP B PAINT  A  MM  N DUI BABE  H
HAIRY TELEMARKETER B  I  C GOATISH  NIL  CLAY
Y T  A YIN U  SATE U  N  I ART  E E GOES TIC 
MODERNPENTATHLON NOSING ADMINISTRATIONS TRACE
AMI  DALES I A   D H A S   N C  VIA F    ORE 
  F  APE   C S H S K POH S E   FALSIFIABLE L 
AFFIRMATIVEACTION VALEDICTORIES T   I S  N E 
 REG A  N  L   WUD  A  R A  TROPICOFCAPRICORN
GORGONIANS LAB L  I BACKCROSSES V   E I  ERA 
LEE KA D I Y  C BONGO  E C E C  EAGER CUSPATE
O N ANADEMS KOHL  C RAID HAD TIS M A N M H I 
BATE D  S   I I   I I     LAT  T OAR E L A O 
E I  N  T  BRYCECANYONNATIONALPARK  APPALLING
FRACTIONALLY  K AGE UTA ICE B ASH TAPE U O SI
L T  C  B A IMPOVERISHMENTS L BIOS  ONSTAGE B
O I  O PLED C EWE A N    U  O US AAL T   R  B
WHO ABO I   H AND T E BIOSOCIAL  B  CHOREA  E
E N CAW S EF      EASE C E  D UDDERS E  SPEAR
R  TEREPHTHALICACID S UKASE SOM  R   S   H  S

The Corresponding Solution

solution

 

HPPP01 HPPP09 HPPP17
HPPP02 HPPP10 HPPP18
HPPP03 HPPP11 HPPP19
HPPP04 HPPP12 HPPP20
HPPP05 HPPP13 HPPP21
HPPP06 HPPP14 HPPP22
HPPP07 HPPP15 HPPP23
HPPP08 HPPP16 HPPP24

146,853 Homophonic Prepper-Sums-Puzzles by Francis Gurtowski

This is yet another serious, serious series of 999 books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

Once again, each of these sequels takes full advantage of (Amazon) Kindle Direct Publishing's twin, generous, upper limits of 590 bound-and-paperbacked, 8.5x11-inch pages.

The concept is simple enough. A Homophonic Prepper-Sums-Puzzle is a counterpart of a crossword puzzle with certain cosmetic deviations, namely

(a) the free-range layout of the resulting niches of the puzzle was not predetermined by an articulated grid,

(b) the clues, such as they are, which is not much, are statistical rather than literary, and

(c) the puzzles are not topical whatsoever; the common theme of one and all is addition per se.

Replace each letter of the alphabet with a decimal digit such that

(a) the respective sums of the digits in the multiple-place niches situated across the grid are mutually equal to some N1 total

and at the same time

(b) the respective sums of the digits in the orthogonal, multiple-place niches situated down the grid are mutually equal to some different N2 total.

For example, 1911699 obviously does not equal 369919, but both 1+1+9+1+1+6+9+9 and 3+6+9+9+1+9 equal 37.

Similarly, 11842199 does not equal 711899, but both 1+1+8+4+2+1+9+9 and 7+1+1+8+9+9 equal 35.

The plain text here is a solution to a novel scheme of crossword puzzles such that it is not words per se but instead numerical summations which are crossed across and down.

Be advised that in order to make your decryption experience even more challenging - and thus much, much, much more rewarding - than it would ordinarily be, there is a catch in my approach to my separate encryptions of the 15x15-square, open-plan crosswords.

Not content to simply substitute precisely one ciphertext letter per plaintext letter (decimal digit), I instead more or less arbitrarily substitute one or more ciphertext letters for each plaintext letter (decimal digit).

So I do not use a simple substitution cipher.

I instead resort to what is called homophonic coding.

According to Merriam-Webster, a homophone is one of two or more words pronounced alike but different in meaning or derivation or spelling - such as the words to, too, and two.

Conventual homophonic coding not only camouflages but also distorts the patented statistics of the English language, which are common knowledge amongst Scrabble aficionados.

The decimal-digit statistics of arbitrary sums are yet to be patented.

With a simple substitution cipher, if the respective frequencies of the plaintext crossword approximate normality then the same will be said of the ciphertext crossword - only spread differently.

A simple substitution cipher is comparatively a piece of cake to attack with paper and pencil.

Homophonic encoding, on the other hand, is absolutely a beast.

A Specimen of the Ciphertext

Across

ZHAQBIFS ZNEYMV
H  Q Z B Z B B 
P  X H HNXOULIS
UHTXHAME O U H 
Q  C B RHPQXOMI
RHBYHOVS C S B 
J  M B   W K X 
J  BBPAIOZP H  
  Q H O   U B  
NHOUYXWK NBIIJV
A W A N   Q Q  
HBXRXIEV  B N  
R H N   BCRHLJS
IBOUHRKK  V S  
M V A   NQKAHWV

Down

ZHPUQRJJ NAHRIM
H  H H   H B B 
A  T B  QOWXHOV
QQXXCYMB U R U 
B  H H BHYAXNHA
IZHABOBP X I R 
F  M V AOWNE K 
SBHERS I K V K 
  N H  O    B N
ZZXOPCWZ N  C Q
N O Q  PUBQBRVK
EBUUXSK  I  H A
Y L O  HBIQNLSH
MBIHMBX  J  J W
V S I    V  S V

The Corresponding Relative Frequencies
Of The Letters Of The Alphabet In A Census
Of The Said Specimen Of The Ciphertext

census

The Corresponding Specimen Of The Plaintext

Across

11811999 129999
1  1 1 1 1 1 1 
7  3 1 12351999
11731899 5 1 1 
1  6 1 41713599
41191599 6 9 1 
9  9 1   9 9 3 
9  11789517 1  
  1 1 5   1 1  
21519399 219999
8 9 8 2   1 1  
11343999  1 2  
4 1 2   1641999
91511499  9 9  
9 9 8   2198199

Down

11711499 281499
1  1 1   1 1 1 
8  7 1  1593159
11336991 1 4 1 
1  1 1 11983218
91181517 3 9 4 
9  9 9 85929 9 
911949 9 9 9 9 
  2 1  5    1 2
11357691 2  6 1
2 5 1  71111499
9111399  9  1 8
9 9 5  11912991
9191913  9  9 9
9 9 9    9  9 9

The Corresponding Solution

solution

 

SUM01 SUM03 SUM05
SUM02 SUM04 SUM06

Learn to Color, Color to Learn - Homeschool Workbooks by Francis Gurtowski

This is yet another serious, serious series of books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

Calling all parents, grandparents, teachers, and school Principals.

Buy this educational series of self-teaching, coloring books for your children, grandchildren, and students.

Sit your child down with this series of over a hundred coloring books.

It is enough to make you want to grab a fistful of colored pencils and have at it yourself.

 

A0 A1 A2
A3 B0 B1
B2 B3 C0
C1 C2 C3
C4 C5 C6
C7 C8 C9
D0 D1 D2
D3 D4 D5
MUL001 MUL002 MUL003
MUL004 MUL005 MUL006
MUL007 MUL008 MUL009
MUL010 MUL011 MUL012
MUL013 MUL014 MUL015
MUL016 MUL017 MUL018
MUL019 MUL020 MUL021
MUL022 MUL023 MUL024
MUL025 MUL026 MUL027
MUL028 MUL029 MUL030
MUL031 MUL032 MUL033
MUL034 MUL035 MUL036
MUL037 MUL038 MUL039
MUL040 MUL041 MUL042
MUL043 MUL044 MUL045
MUL046 MUL047 MUL048
MUL049 MUL050 MUL051
MUL052 MUL053 MUL054
MUL055 MUL056 MUL057
MUL058 MUL059 MUL060
MUL061 MUL062 MUL063
MUL064 MUL065 MUL066
MUL067 MUL068 MUL069
MUL070 MUL071 MUL072
MUL073 MUL074 MUL075
MUL076 MUL077 MUL078
MUL079 MUL080 MUL081
MUL082 MUL083 MUL084
MUL085 MUL086 MUL087
MUL088 MUL089 MUL090
MUL091 MUL092 MUL093
MUL094 MUL095 MUL096
MUL097 MUL098 MUL099
D6 D7 MUL100
MUL101 MUL102 MUL103
MUL104 MUL105 MUL106
MUL107 MUL108 MUL109
MUL110 MUL111 MUL112
MUL113 MUL114 MUL115
MUL116 MUL117 MUL118
MUL119 MUL120 MUL121
MUL122 MUL123 MUL124
MUL125 MUL126 MUL127
MUL128 MUL129 MUL130

Beyond Anagrams

Words, Anagrams, Alphabetized Anagrams, Palettes, and the Alphabet by Francis Gurtowski

This is yet another serious, serious series of books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

The way (or ways) in which a word is routinely spelled out (in the proverbial dictionary) is pretty much cut-and-dried.

The notable exceptions being the annoying British variants.

Such as analogue versus analog, and razzamatazz versus razzmatazz.

It could be worse, I guess.

If the Francophile Thomas Jefferson had had his way, way back when, then the United States of America would have adopted Anglo-Saxon as our official language.

An anagram is an arbitrary transposition of an authoritative spelling (of a word) for the purpose of ambiguation.

From here on out, by "word" I shall mean a correct spelling of a word.

By "anagram" I shall mean a permuted spelling.

By "palette" I shall mean a spelling shorn of duplicate instances of letters.

Brevity is a virtue.

The twenty-six letters of the alphabet are the ultimate palette, but I know of no such word employing at least one instance of each.

The longest palettes I could find are fourteen letters in length:

abcehlmorstuxy abceilmnorstuy abdeilmorstuxy acdefhilmnortu
acdeghilmortuy acefilmnoprstv aceghilmnoprty aceghilnoprsuy
acegilmorstuvy acehilmnoprtuy adeghilmnostyz adehilnoprstuz
adeilmnorstuvy aeghilmnortuwy bcehilmnoprsty cdeghilmnopruy
ceghilnoprstuy

For example, bcehilmnoprsty is the palette of this threesome:

comprehensibility incomprehensibility intercomprehensibility

Palettes are as far beyond anagrams as anagrams are beyond words.

Permit me to bastardize a bit of the jargon of relational database.

A First Normal Form of a word is the word itself.

Such as caterer.

A Second Normal Form of a word is the alphabetized anagrammatization of the word.

Such as aceerrt.

A Third Normal Form of a word is the alphabetized permutation of the word (and thus of its anagrams) shorn of duplicate instances of letters.

Such as acert.

Each First is subordinate to one and only one Second and to one and only one Third.

Each Second is subordinate to one and only one Third.

On the other hand, each Third subsumes one or more Seconds.

Such as acert subsumes aacertt, aacerttt, acceert, aceeerrt, aceeertt, aceerrt, aceert, acerrt, acerrtt and acert itself.

Each Second subsumes one or more Firsts.

Such as aceerrt subsumes caterer, retrace and terrace.

87,624  5-Letter Anagrams
78,870  6-letter Anagrams
43,410  7-letter Anagrams
48,484  8-letter Anagrams
46,146  9-letter Anagrams
23,310 10-letter Anagrams
24,830 11-letter Anagrams
37,242 12-letter Anagrams
35,728 13-letter Anagrams
18,093 14-letter Anagrams
19,645 15-letter Anagrams
22,077 16-letter Anagrams
21,406 17-letter Anagrams
22,110 18-letter Anagrams
20,923 19-letter Anagrams
21,513 20-letter Anagrams
18,909 21-letter Anagrams

1st 18,569 Anagrams 2nd 18,569 Anagrams 3rd 18,569 Anagrams

Anagrams Plus ... by Francis Gurtowski

This is yet another serious, serious series of books created by Francis Gurtowski.

The prolific author is an authentic, ancient coder, going all the way back to IBM Poughkeepsie (Building 705, no less, second floor) and the heyday of OS/360, Robert Rex Seeber Jr. and the horizontal-microcoded System/360 Model 50, coding pads and the coding-pad veto, punch cards and keypunch machines, and self-modifying code.

Francis Gurtowski is also a self-styled Henry Ford of contemporary, do-it-yourself, print-on-demand, book publishing.

Henry Ford is synonymous with the assembly line, a perfected process for swiftly turning out a series of ingenious, finished products in a foolproof, mechanically-efficient manner.

This series of self-described, self-help books is more than just a collection of collections of word puzzles, in the English language.

It is a fun and effective way to progressively assimilate the entire vocabulary of the English language, at your own pace, one word-length at a time, five-letter words (and phrases) on up.

The author obsessively digested dozens of English dictionaries into massive lists of words, arranged each of the respective lists into alphabetical order, and then scrambled the spellings multiple times.

Each book is dedicated to a single length of word, with thousands and thousands of puzzles up front, and the solutions in the back of each book.

The solutions are in alphabetical order, which gives away the fact that the solutions to the first anagrams begin with the first letter of the alphabet and the solutions to the last anagrams begin with the last letter of the alphabet.

Moreover, one anagram is solved on each page, which practically gives away the solutions to the anagrams immediately before it and immediately after it.

It always seemed odd to me that schools do not teach all the one-letter words first, all the two-letter words second, all the three-letter words third, and so forth.

It is worth a try.

1st anagrams 2nd anagrams 3rd anagrams
beyond anagrams 5-letter anagrams 6-letter anagrams
7-letter anagrams 8-letter anagrams 9-letter anagrams
10-letter anagrams 11-letter anagrams 12-letter anagrams
13-letter anagrams 14-letter anagrams 15-letter anagrams
16-letter anagrams 17-letter anagrams 18-letter anagrams
19-letter anagrams 20-letter anagrams 21-letter anagrams




Hello, world.

C:\>erase boot.txt
C:\>dial 8.6.0 28.6.0 25.0.1024 5.6.0 9.6.0 3.0.0
C:\>erase tape.txt
C:\>punch 15 21 3 25 25 9 11 22 15 20 2 9 4 25 19 11 23 18 24 16
C:\>myEDSAC.exe configure clear copy general mount begin file exit
  0    8.6.0  0.0.32780 100014 001000000000001100 +0.5001831054687500
  1   28.6.0 0.0.114700 340014 011100000000001100 -0.2498168945312500
  2 25.512.0 0.0.103424 312000 011001010000000000 -0.4218750000000000
  3    5.6.0  0.0.20492 050014 000101000000001100 +0.3126831054687500
  4    9.6.0  0.0.36876 110014 001001000000001100 +0.5626831054687500
  5    3.0.0  0.0.12288 030000 000011000000000000 +0.1875000000000000
C:\>type print.txt
HELLO, WORLD.
C:\>

A Terse Computer Program in a Strange Language

erase and type are the once familiar MS-DOS commands; dial, punch, and myEDSAC.exe are this author/coder/user's own MS-Win32 Console Applications; and tape.txt, boot.txt, and print.txt are Text Documents in MS-DOS format:
  • dial and punch append to boot.txt and tape.txt and

  • myEDSAC.exe reads both of those documents and writes out print.txt from scratch.
configure, clear, copy, general, mount, begin, file, and exit are subcommands of myEDSAC.exe:
  • configure and mount soak up boot.txt and tape.txt,

  • file forms any written communication into print.txt,

  • clear, copy, and begin mimic push buttons found on the dashboard of EDSAC, and

  • general enables curious me to examine the minutiae of the simulated general store.

Then and Now

The limited lens of a rinky-dink oscilloscope variously rigged up to EDSAC once characterized the now denigrated Dark Ages of computer operations.

Today, the display-type subcommands (such as general) of myEDSAC.exe are the mainstay of a bonus, debugging/code-optimization bundle:

  • state changing alter-type subcommands,

  • data collection and reduction drills,

  • controls to initiate, focus, or throttle back on event recording, and

  • code visualization tricks that make abstractions such as code loops seem to materialize via graphs and figures.

Dot Notation

A decimal shorthand for longhand binary numbers.

25.0.1024 = 25.512.0 = 0.0.103424 = 011001010000000000

dial.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
 
void main ( int argc, char ** argv ) {
  char s [19];
  FILE * f1, * f2, * f3;
  int i, j, k, m, n;
  f1 = fopen ( "boot.txt",    "a" );
  f2 = fopen ( "octal.txt",   "w" );
  f3 = fopen ( "decimal.txt", "w" );
  for ( n = 1; n < argc; ++ n ) {
    sscanf ( * ( argv + n ), "%i.%i.%i", & i, & j, & k );
    m = 4096 * i + 2 * j + k;
    strcpy ( s, ( m % 262144 / 131072 ? "1" : "0" ) );
    strcat ( s, ( m % 131072 /  65536 ? "1" : "0" ) );
    strcat ( s, ( m %  65536 /  32768 ? "1" : "0" ) );
    strcat ( s, ( m %  32768 /  16384 ? "1" : "0" ) );
    strcat ( s, ( m %  16384 /   8192 ? "1" : "0" ) );
    strcat ( s, ( m %   8192 /   4096 ? "1" : "0" ) );
    strcat ( s, ( m %   4096 /   2048 ? "1" : "0" ) );
    strcat ( s, ( m %   2048 /   1024 ? "1" : "0" ) );
    strcat ( s, ( m %   1024 /    512 ? "1" : "0" ) );
    strcat ( s, ( m %    512 /    256 ? "1" : "0" ) );
    strcat ( s, ( m %    256 /    128 ? "1" : "0" ) );
    strcat ( s, ( m %    128 /     64 ? "1" : "0" ) );
    strcat ( s, ( m %     64 /     32 ? "1" : "0" ) );
    strcat ( s, ( m %     32 /     16 ? "1" : "0" ) );
    strcat ( s, ( m %     16 /      8 ? "1" : "0" ) );
    strcat ( s, ( m %      8 /      4 ? "1" : "0" ) );
    strcat ( s, ( m %      4 /      2 ? "1" : "0" ) );
    strcat ( s, ( m %      2 /        ? "1" : "0" ) );
    fprintf ( f1, "%s\n",   s );
    fprintf ( f2, "%06o\n", m );
    fprintf ( f3, "%6i\n",  m );
  }
  fclose ( f3 );
  fclose ( f2 );
  fclose ( f1 );

boot.txt

001000000000001101
011100000000001101
011001010000000000
000101000000001101
001001000000001101
000011000000000000

octal.txt

100015
340015
312000
050015
110015
030000

decimal.txt

 32781
114701
103424
 20493
 36877
 12288

punch.c

#include <stdio.h>
#include <stdlib.h>
 
static char * table [] = {
  "10000", "10001", "10010", "10011", "10100", "10101", "10110", "10111",
  "11000", "11001", "11010", "11011", "11100", "11101", "11110", "11111",
  "00000", "00001", "00010", "00011", "00100", "00101", "00110", "00111",
  "01000", "01001", "01010", "01011", "01100", "01101", "01110", "01111"
};
 
void main ( int argc, char ** argv ) {
  FILE * f;
  int n;
  f = fopen ( "tape.txt", "a" );
  for ( n = 1; n < argc; ++ n )
    fprintf ( f, "%s\n", table[atoi ( * ( argv + n ) ) % 32] );
  fclose ( f );
}

tape.txt

11111
00101
10011
01001
01001
11001
11011
00110
11111
00100
10010
11001
10100
01001
00011
11011
00111
11111
00010
01000
00000

Cellular Stores

American-made ENIAC was deep-rooted in IBM tabulating equipment. ENIAC leveraged the prime medium of eighty-column, 960-hole, IBM cards to the hilt for both data input and data output.

On the other hand, British-made EDSAC made do with the hangover of the sub prime medium of five-hole tape. Even so, EDSAC did so only for the input of both data and directives, not for the output of anything.

Without tape output, EDSAC was at best merely half a Turing Machine.

Cambridge University flaunted the uniquely British aesthetic of jerry-building, cobbled together radar accessories and a Creed Model 7B teleprinter, and mustered not one, but two, false-fronted bulk cellular stores. EDSAC's off-the-shelf acoustical delay lines had originated during the war for the purpose of motion detection in the context of radar pings.

Boot storage consisted of 738 binary digits marshaled into forty-one eighteen-bit cells numbered 0-40. The larger of the British tandem of bulk cellular stores, general storage, was composed of 9,216 bits arranged into 512 cells of the same size and shape, and similarly numbered 0-511.

41  
512 cells of general storage

A fluffy cloud of formless storage capacity (which, after all, is what an acoustical delay line amounts to) is totally useless as a playing surface without a crisp time-sliced veneer of structure. Post-ENIAC computers require a proper digital game board for their dualistic code which consists of both data and directives where a binary number can play either role or both.

An optical illusion of a honeycomb or an egg crate is far more satisfactory than the semblance of a blob. Unit cells of the former are numbered 0, 1, 2 and so on, discerning one cell from another cell is child's play, and the Lego-like parts conveniently snap together into pairs, quads, et cetera.

Lesson Learned

Hardware test cases were slipped into EDSAC via a makeshift backdoor. It was a defining moment and an historic occasion when Cambridge University eventually bolted down the temporary scaffolding and dedicated it to the bootstrap.

Herein the cells of boot storage are rechristened ranks, lest there be even more confusion differentiating them versus the cells of general storage. A total of 246 octal dials (six per rank) directly manipulated the boot store. However, the resulting lineup of data/directives was merely warehoused there because the bootstrap itself had to be replicated in general storage before the starter substance was appropriately sited for execution.

A certain push button copied ranks 0-40 into cells 0-40 of general storage, and then another dashboard control pulled the trigger and (ready or not) got the entire computational caboodle chugging along down the track.

Boot storage was strictly off-limits to the personnel who coded EDSAC; to every last one of the coders. Cambridge University strategically fenced off the boot store in favor of an absolute mystification seemingly bestowed fully formed by the gods. This benefaction loaded code concoctions from tape into general storage, and the bootstrap had it all: the bootstrap was the beneficiary of direct manipulation, it was sited at cell 0, and it was also entered there.

However, those perogatives had consequences inasmuch as they prohibited the coders from ever again directly dialing code in by hand elegantly in octal. Intern/designated coder of the bootstrap, David J. Wheeler, alone had been afforded that privilege, and even him only once.

After that, everyone had to program EDSAC at arm's length; in base-32, yet. Eighteen bits is not a multiple of five bits, and this affront to the worship of elegance chafed the more sensitive coders. Aesthetics aside, it was much too much to expect repetitions of the feat of 246 flawless dial settings. As a last resort, draconian measures encapsulated the bootstrap, and (as an added bonus) the primitive permanent arrangement also survived electrical power outages.

Encapsulation

The prescribed use of the medium of tape for the input data was a no-brainer.

However, the accompanying proposal to also use tape for the code itself faced a wall of skepticism despite the pitch/spiel that the envisioned canonical tape snippets of dependable data/directives would be equivalent to generic jigsaw puzzle pieces.

Tape facilitated (a) encapsulation of modules of code besides the bootstrap, (b) infallible replication of the modules by machine for backup, and (c) immediate repair of the modules with the equivalent of errata slips.

The equivalent of Band-Aids simply overlaid one datum/directive with another, while the likes of surgical repairs digressed to and from ad hoc curative subroutines sited in set-aside patch areas.

Best-of-class subroutines were punched into separate tapes which were not only color coded. They were also labeled, archived, advertised, and retrieved from the vault on demand, and enterprising coders got a leg up by tapping into these predigested encapsulations.

The personnel who operated EDSAC stood off and entered the spotlight as needed. Human beings on call at all times dismounted the current tape, mounted the next tape, pressed a button to resume the blocked code, and retreated offstage again.

When a package was sufficiently proven, then and only then was the bundle turned over to a designated closer (someone analogous to a motion picture film editor) who proceeded to merge the constituent tapes into an ostensibly seamless stand-alone tape.

Each directive (as well as each datum disguised as an directive) spanned a minimum of two rows of tape. Furthermore, the cryptic protocol for delineating these patterns further obfuscated the arm's-length coding rigmarole.

The bootstrap took up its own store and squatted in the prime cells of general storage: the monolithic bootstrap was lodged at a fixed location in the general store while the various combinations of homeless modules in cahoots were indiscriminately domiciled just about anywhere.

The convenient sophism of imagining the floaters layering the bootstrap deferred the inevitable reckoning with respect to occupancy.

  • First, the coders positioned the various modules (the main module of the application program, its subroutines, and its data) making sure to avoid encroaching upon the footprint/bootprint of the bootstrap.

  • Then, the coders acquainted the bootstrap with the pertinent specifics of the site plan, the spatial adjustments required by the individual directives, and the entry point of the composition of code.

Such superfluities were the gist of metaprogramming which was concerned with the superficialities of the code; not with the essential logic of the code itself.

Tear Down the Wall

All of boot storage is now accessible to me, thanks to myEDSAC.exe.

Moreover, myEDSAC.exe supports as many ranks of boot storage as it does cells of general storage.

The simple-enough transformation from a niggling 41 ranks of boot storage

41  
512 cells of general storage

to a full-blown 2048 ranks of them

2048 ranks of boot storage  
2048 cells of general storage

encourages an intimate unmediated machine language relationship with the zeros and ones of myEDSAC.exe channeling EDSAC.

Bletchley Park and Jurassic Park

A stiff price for supple IBM cards far exceeded the shoe-laces-and-chewing-gum budgets of post-war Europe; on the other hand, limp tape was dirt cheap. The data processing medium of last resort was as ubiquitous as toilet paper because the cryptanalysts at Bletchley Park had militarized paper tape, of all things.

Boffins (upon their return to academia and industry) reclaimed the familiar spools of long strips as narrow as ribbon.

Furthermore, a sufficiency of hoarded rolls of blank tape had been squirreled away to result in a sharp spot-market devaluation, and a surplus stash at Cambridge University was put to especially good use.

Over the course of its career, the workhorse of a service bureau for scientific applications chugalugged tape and spewed out printouts around the clock. However, in spite of its demonstrated prowess, EDSAC was unceremoniously scrapped after a curtailed lifetime of nonstop operation.

The official narrative is that the one-off was shortsightedly melted down and the slag was sold off by the ton, but, instead, EDSAC may have been conveniently done away with ahead of an embarrassing pending collapse of the module library under its own administrative weight.

Published verses of some of the extinct laboratory instrument's software miraculously survived the conflagration, and David J. Wheeler's densely encoded and almost double helical algorithm stands out as a Rosetta stone and a paradigm of a teaching aid.

While its controversial code mutations amount to thought crimes (from the point of view of the computer programming nannies — who freak out at the mere thought of self-modifying code), David J. Wheeler's bootstrap — having been preserved in proverbial amber — is now even more opportune as a ritual to verify that myEDSAC.exe does not misrepresent the prospective coder's view of EDSAC.

Soul of a New Machine

No one knew enough yet to take David J.Wheeler aside and inform him that his mission was impossible. Young and gullible David J. Wheeler managed to configure the soul of the new machine even though the uniselectors were so scant in number besides so positively antique.

As American historian Professor Jonathan Steinberg put it so well in a different context: "He had a sureness of touch and depth of insight into the tangled lines of force ... which led him to success after success. He made the impossible look easy, which is the indelible mark of the champion at any game."

American essayist & poet Ralph Waldo Emerson would have classified David J. Wheeler as among the relatively great: "They are such, in whom, at the moment of success, a quality is ripe which is then in request. Other days will demand other qualities ..."

David J. Wheeler carefully crafted the maximum of forty-one data/directives

000101000000000000 000011000000101000 000000000000000010 000111000000000100 011100000001001110 000100000000001000 011111000000000000 011001000000010000 000101000000000000 001000000000000010 011100000000000010 001100000001001110 011011000000001000 011001000000000001 001100000001001110 000011000000100010 001100000000001110 011100000001000110 000101000000101000 011100000000000000 010101000000010000 011100000001010000 000101000001010110 011100000000101100 011100000000000100 000101000000101100 000011000001000100 011100000001010110 000011000000010000 011100000001010100 011100000001010000 000011000000110010 011100000000101100 000101000001010100 001000000001010001 011100000001010001 011001100000000000 000101000001010000 000011000000010000 000000000000001011 000000000000000001

separated each string of eighteen bits into six substrings of three bits apiece

000 101 000 000 000 000 000 011 000 000 101 000 000 000 000 000 000 010 000 111 000 000 000 100 011 100 000 001 001 110 000 100 000 000 001 000 011 111 000 000 000 000 011 001 000 000 010 000 000 101 000 000 000 000 001 000 000 000 000 010 011 100 000 000 000 010 001 100 000 001 001 110 011 011 000 000 001 000 011 001 000 000 000 001 001 100 000 001 001 110 000 011 000 000 100 010 001 100 000 000 001 110 011 100 000 001 000 110 000 101 000 000 101 000 011 100 000 000 000 000 010 101 000 000 010 000 011 100 000 001 010 000 000 101 000 001 010 110 011 100 000 000 101 100 011 100 000 000 000 100 000 101 000 000 101 100 000 011 000 001 000 100 011 100 000 001 010 110 000 011 000 000 010 000 011 100 000 001 010 100 011 100 000 001 010 000 000 011 000 000 110 010 011 100 000 000 101 100 000 101 000 001 010 100 001 000 000 001 010 001 011 100 000 001 010 001 011 001 100 000 000 000 000 101 000 001 010 000 000 011 000 000 010 000 000 000 000 000 001 011 000 000 000 000 000 001

converted the 246 binary triplets to base-8

0 5 0 0 0 0 0 3 0 0 5 0 0 0 0 0 0 2 0 7 0 0 0 4 3 4 0 1 1 6 0 4 0 0 1 0 3 7 0 0 0 0 3 1 0 0 2 0 0 5 0 0 0 0 1 0 0 0 0 2 3 4 0 0 0 2 1 4 0 1 1 6 3 3 0 0 1 0 3 1 0 0 0 1 1 4 0 1 1 6 0 3 0 0 4 2 1 4 0 0 1 6 3 4 0 1 0 6 0 5 0 0 5 0 3 4 0 0 0 0 2 5 0 0 2 0 3 4 0 1 2 0 0 5 0 1 2 6 3 4 0 0 5 4 3 4 0 0 0 4 0 5 0 0 5 4 0 3 0 1 0 4 3 4 0 1 2 6 0 3 0 0 2 0 3 4 0 1 2 4 3 4 0 1 2 0 0 3 0 0 6 2 3 4 0 0 5 4 0 5 0 1 2 4 1 0 0 1 2 1 3 4 0 1 2 1 3 1 4 0 0 0 0 5 0 1 2 0 0 3 0 0 2 0 0 0 0 0 1 3 0 0 0 0 0 1

and hand-dialed the octal numerals into the primitive read-only memory.

The token amount of makeshift boot storage was the best that David J. Wheeler's academic advisor, Maurice V. Wilkes, could do on short notice. Fortunately, the niche itself was perfectly situated well out of reach.

The nook was fortuitously tucked away where David J. Wheeler's precocious contribution to the business at hand (and what turned out to be David J. Wheeler's priceless bequest to all posterity) would not be fodder for hackers.

rank boot storage
00 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
01 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0
02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
03 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
04 0 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0
05 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
06 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
07 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
08 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
09 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
10 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
11 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0
12 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0
13 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
14 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0
15 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0
16 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0
18 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0
19 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
21 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0
22 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0
23 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0
24 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
25 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0
26 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0
27 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0
28 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
29 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0
30 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0
31 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0
32 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0
33 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0
34 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
35 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1
36 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
38 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
bit 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

Registers

Besides the boot store and the general store, EDSAC also had six even lower capacity information repositories known as its registers:

  • Accumulator
  • Directive
  • Dual use
  • Input
  • Output
  • Pointer

The accumulator register was the length of four cells. It consisted of a pad bit, a sign bit, and seventy bits of precision.

Positive sign bit

  0                                
                                   
                                   
                                   
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

Negative sign bit

  1                                
                                   
                                   
                                   
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

All negative numbers were expressed in twos-complement form.

The dual use register — which was used (a) for both of the explicit multiplication operations and (b) for conjunction — was only two cells in length. Half the length of the accumulator register. The dual use register consisted of another bit of padding, another sign bit, and just thirty-four bits of precision.

Positive sign bit

  0                                
                                   
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

Negative sign bit

  1                                
                                   
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

It bears repeating that all negative numbers were expressed in twos-complement form.

EDSAC's instruction format reserves eleven bits for an address — even though EDSAC itself did not make use of all of them.

EDSAC never configured more than 512 cells of general storage.

Inasmuch as 512 is 2^9, this accessory was nominally nine bits long.

                     
00 01 02 03 04 05 06 07 08 09 10

myEDSAC.exe, on the other hand, implements a full complement of 2048 cells of general storage. Therefore my simulated pointer register is eleven bits long.

                     
00 01 02 03 04 05 06 07 08 09 10

The directive register was one cell in length. Half the length of the dual use register. This accessory held the working copy of the cell selected by the pointer register for interrogation.

                                   
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

The input register and the separate output register were each five bits long.

         
00 01 02 03 04
         
00 01 02 03 04

The input register was the row of tape under the reading head. A read directive was supposed to incorporate the current row and then automatically advance the next row. However, if the tape was missing in action — as was often the case — then the read directive stalled.

Each row of tape had five punch sites.

row of tape
         
00 01 02 03 04

More about the output register can be found ahead.

A hole found punched into the tape was normally construed as a one and a null as a zero. No surprise there. However, the first punch site of each row was interpreted vice versa.

null hole
1 0
null hole
0 1
null hole
0 1
null hole
0 1
null hole
0 1
null hole
1 0
null hole
0 1
null hole
0 1
null hole
0 1
null hole
0 1
ooo
null hole
1 0
null hole
0 1
null hole
0 1
null hole
0 1
null hole
0 1

Consequently a blank row of tape was read as a sixteen rather than a zero.

Blinking Lights

Conspicuous panels of flashing lights — some positioned front and center, close at hand, at a spacious desk-like console — and others off to the side and literally wall-papering the whole room — which was accordingly reminiscent of a beloved Horn & Hardart Automat — became the darling icon for IBM computers.


It least they did once Thomas J. Watson, Sr. unabashedly pimped Robert Rex Seeber Jr.'s concept of a digital computer (SSEC, short for IBM Selective Sequence Automatic Calculator) in the show window of IBM headquarters in mid-Manhattan within easy walking distance from Times Square.


The SSEC was visible to pedestrians on the sidewalk, and inspired a generation of cartoonists to portray the computer as a series of wall-sized panels covered with lights, meters, dials, switches, and spinning rolls of magnetic tape.

The viral meme really burst into bloom when the off-Broadway sidewalk spectacle was portrayed on a front cover of The New Yorker.


Thomas J. Watson, Sr., gave all-comers carte blanche to his triumph of market research disguised as customer education.


While the heightened incandescence was superior salesmanship, for sure, as a practical matter, the light show also facilitated the operation of the IBM computer in the window.


Moreover, throngs of bug-eyed onlookers extending onto 59th Street observed the binary contents of the plethora of registers et al change in real time.

The SSEC ran at this location from January 1948 to July 1952, when it was replaced by the first-off-the line 701, IBM's first "mass"-produced computer (i.e, more than one).

In retrospect, EDSAC missed the boat regarding blinking lights — unless you count the relatively infinitesimal dots and naughts on the tiny screens of strap-on, add-on cathode ray tubes.

Two Printer Modes

There was more to printing than what appeared on the printout because Letter Mode and Figure Mode were mutually exclusive. Computer programs had to toggle the mode of the printer in order to stay on message.

The personnel who operated EDSAC were indoctrinated to press CLEAR before pressing GO. The bootstrap was entered at cell 0 only because the act of clearing EDSAC affected the pointer register. However, while that was a legitimate axiom, the computer program could not assume anything about the printer — because clearing EDSAC did not affect the output register. Nor did clearing EDSAC affect the mode of the printer.

Thirty-two printer codes require a virtual sixth bit to distinguish ten decimal figures, twenty-six letters of the alphabet, sixteen punctuation marks, and six printer controls:

  • In Letter Mode, the printer codes represented both A-Z and these printer controls:

    • Printer code 11 placed the printer into Figure Mode.
    • Printer code 15 placed the printer into Letter Mode.
    • Printer code 16 flushed the output register.
    • Printer code 18 performed the Carriage Return operation.
    • Printer code 20 performed the Space operation.
    • Printer code 24 performed the Line Feed operation.

  • In Figure Mode, the same printer codes represented 0-9 and the punctuators. The same printer codes also invoked the same printer controls.

Spaces edited leading zeros, Carriage Return and Line Feed in tandem arrangement completed a line of printout, and, ultimately, it was essential to remember to flush the output register.

A printer code was embedded in the cell that was found at the address that was embedded in the print directive itself. A selfie print directive ultimately performed the Carriage Return operation.

Every alphanumeric, punctuation and control item except flush made a stopover in the single-item-wide output register on the way to the printer. Every item except flush was inoperative until it reached the printer. The last pending item remained on hold for so long as it remained buffered in the output register. A print directive delivered the holdover before buffering the next item.

Hello again, world.

C:\>erase boot.txt
C:\>dial 8.6.0 28.6.0 25.0.1024 5.6.0 9.6.0 3.0.0
C:\>erase tape.txt
C:\>punch 15 21 3 25 25 9 20 28 27 28 8 22 11 22 15 20 2 9 4 25 19 11 23 18 24 16
C:\>myEDSAC.exe configure clear copy mount begin file exit
C:\>type print.txt
HELLO AGAIN, WORLD.
C:\>
 
printer output
output register printer mode output datum
integer binary letter figure
0 00000 P 0 ..00000...........
1 00001 Q 1 ..00001...........
2 00010 W 2 ..00010...........
3 00011 E 3 ..00011...........
4 00100 R 4 ..00100...........
5 00101 T 5 ..00101...........
6 00110 Y 6 ..00110...........
7 00111 U 7 ..00111...........
8 01000 I 8 ..01000...........
9 01001 O 9 ..01001...........
10 01010 J space ..01010...........
11 01011 figure mode ..01011...........
12 01100 S " ..01100...........
13 01101 Z + ..01101...........
14 01110 K ( ..01110...........
15 01111 letter mode ..01111...........
16 10000 flush ..10000...........
17 10001 F $ ..10001...........
18 10010 CR ..10010...........
19 10011 D ; ..10011...........
20 10100 space ..10100...........
21 10101 H £ ..10101...........
22 10110 N , ..10110...........
23 10111 M . ..10111...........
24 11000 LF ..11000...........
25 11001 L ) ..11001...........
26 11010 X / ..11010...........
27 11011 G # ..11011...........
28 11100 A - ..11100...........
29 11101 B ? ..11101...........
30 11110 C : ..11110...........
31 11111 V = ..11111...........
 
 
 
tape input printer output
input register conversion input datum output register printer mode output datum
punch binary decimal before after integer binary letter figure
          0 0 0 0 0  0 16  10000 00000 00…0000000  0 00000 P 0 ..00000..…..
          0 0 0 0 1  1 17  10001 00001 00…0000001  1 00001 Q 1 ..00001..…..
          0 0 0 1 0  2 18  10010 00010 00…0000010  2 00010 W 2 ..00010..…..
          0 0 0 1 1  3 19  10011 00011 00…0000011  3 00011 E 3 ..00011..…..
          0 0 1 0 0  4 20  10100 00100 00…0000100  4 00100 R 4 ..00100..…..
          0 0 1 0 1  5 21  10101 00101  5  00…0000101  5 00101 T 5 ..00101..…..
          0 0 1 1 0  6 22  10110 00110 00…0000110  6 00110 Y 6 ..00110..…..
          0 0 1 1 1  7 23  10111 00111 00…0000111  7 00111 U 7 ..00111..…..
          0 1 0 0 0  8 24  11000 01000 00…0001000  8 01000 I 8 ..01000..…..
          0 1 0 0 1  9 25  11001 01001 00…0001001  9 01001 O 9 ..01001..…..
          0 1 0 1 0 10 26  11010 01010 10  00…0001010 10 01010 J space ..01010..…..
          0 1 0 1 1 11 27  11011 01011 11  00…0001011 11 01011 figure mode ..01011..…..
          0 1 1 0 0 12 28  11100 01100 12  00…0001100 12 01100 S " ..01100..…..
          0 1 1 0 1 13 29  11101 01101 13  00…0001101 13 01101 Z + ..01101..…..
          0 1 1 1 0 14 30  11110 01110 14  00…0001110 14 01110 K ( ..01110..…..
          0 1 1 1 1 15 31  11111 01111 15  00…0001111 15 01111 letter mode ..01111..…..
          1 0 0 0 0 16 00000 10000 16  00…0010000 16 10000 flush ..10000..…..
          1 0 0 0 1 17 00001 10001 17  00…0010001 17 10001 F $ ..10001..…..
          1 0 0 1 0 18 00010 10010 18  00…0010010 18 10010 CR ..10010..…..
          1 0 0 1 1 19 00011 10011 19  00…0010011 19 10011 D ; ..10011..…..
          1 0 1 0 0 20 00100 10100 20  00…0010100 20 10100 space ..10100..…..
          1 0 1 0 1 21 00101 10101 21  00…0010101 21 10101 H £ ..10101..…..
          1 0 1 1 0 22 00110 10110 22  00…0010110 22 10110 N , ..10110..…..
          1 0 1 1 1 23 00111 10111 23  00…0010111 23 10111 M . ..10111..…..
          1 1 0 0 0 24 01000 11000 24  00…0011000 24 11000 LF ..11000..…..
          1 1 0 0 1 25 01001 11001 25  00…0011001 25 11001 L ) ..11001..…..
          1 1 0 1 0 26 10  01010 11010 26  00…0011010 26 11010 X / ..11010..…..
          1 1 0 1 1 27 11  01011 11011 27  00…0011011 27 11011 G # ..11011..…..
          1 1 1 0 0 28 12  01100 11100 28  00…0011100 28 11100 A - ..11100..…..
          1 1 1 0 1 29 13  01101 11101 29  00…0011101 29 11101 B ? ..11101..…..
          1 1 1 1 0 30 14  01110 11110 30  00…0011110 30 11110 C : ..11110..…..
          1 1 1 1 1 31 15  01111 11111 31  00…0011111 31 11111 V = ..11111..…..

Marching Orders

EDSAC was like the genie in Aladdin's magic lamp who grants wishes.

EDSAC took its standing orders from human operators (firsthand) and its marching orders from the directives among the code (secondhand). EDSAC did literally whatever the stylized messages from man to machine told it to do; any so-called original intent of the coder was entirely immaterial.

EDSAC was a utopian mechanism with a six-stroke engine:

  1. fetch the current directive from the focal point within general storage,

  2. parse the fetched cell,

  3. optionally load the designated datum from general storage,

  4. attempt to perform the pertinent operation,

  5. optionally store a datum wherever it belongs in general storage, and

  6. refocus if necessary upon the site of the either the default next directive or the designated next directive.

The cadence repeated akin to perpetual motion, and it tantalized infinite possibilities.

On the threshold of every successive cycle, the pointer register held the address of the cell that (in turn) held the current directive. This precise focusing construct led the machine through general storage one directive at a time, wherever the coder's wiring diagram said to go.

Cycles either finished and completed a step, or else they stalled and nullified the aborted step:

  • After a step (unless a selfie fork directive boomeranged), the pointer register held the necessarily different address of the next directive.

  • After a stall, the pointer register held the same address of the same directive.

Elapsed clock times per step differed by up to more than an order of magnitude. The enormity of the variance depended upon the comparative scopes of the operations.

EDSAC was a sequential machine. EDSAC's cycles/steps abutted one another and did not overlap whatsoever. Nothing was in the proverbial pipeline.

EDSAC was quiescent until it was activated by a push button. Stalling and/or stopping left EDSAC between cycles/steps, quiescent again, and eager once more to immediately obey mankind.

opcode blurb explanation
00000 Stalls. Stalls.
00001 Stalls. Stalls.
00010 Stalls. stalls.
00011 Jumps if positive. Jumps to the designated cell if the accumulator register is positive.
00100 Shifts right. Shifts the contents of the accumulator register to the right.
00101 Stores and clears. Stores the designated portion of the accumulator register into the designated cell or pair of cells.

Clears the accumulator register.

00110 Adds 2^-35. Rounds up by adding 2^-35 to the accumulator register.
00111 Stores. Stores the designated portion of the accumulator register into the designated cell or pair of cells.
01000 Reads or stalls. Attempts to read the input register into the designated cell or pair of cells.

Otherwise stalls.

01001 Prints and buffers. Prints the output register.

Buffers (in the output register) the print character embedded in the designated cell or pair of cells.

01010 Stalls. stalls.
01011 Stalls. stalls.
01100 Subtracts. Subtracts the designated cell or pair of cells from the accumulator register.

Stores the remainder in the accumulator register.

01101 Stops. Stops the machine.
01110 Stalls. stalls.
01111 Stalls. stalls.
10000 Stalls. stalls.
10001 Checks. Stores the output register into the designated cell or pair of cells.
10010 Stalls. stalls.
10011 Stalls. stalls.
10100 Stalls. stalls.
10101 Loads. Loads into the dual use register the designated cell or pair of cells.
10110 Multiplies and subtracts. Multiplies the designated cell or pair of cells times the dual use register.

Subtracts the product from the accumulator register.

Stores the difference in the accumulator register.

10111 Stalls. stalls.
11000 Stalls. stalls.
11001 Shifts left. Shifts the contents of the accumulator register to the left.
11010 Adds 2^-17. Rounds up by adding 2^-17 to the accumulator register.
11011 Stalls. stalls.
11011 Jumps if negative. Jumps to the designated cell if the accumulator register is negative.
11100 Adds. Adds the designated cell or pair of cells to the accumulator register.

Stores the sum in the accumulator register.

11101 Stalls. stalls.
11110 ANDs and adds. ANDs the designated cell or pair of cells with the dual use register.

Adds the conjunction to the accumulator register.

Stores the sum in the accumulator register.

11111 Multiplies and adds. Multiplies the designated cell or pair of cells times the dual use register.

Adds the product to the accumulator register.

Stores the sum in the accumulator register.

 
 
 
0 stalls
  0 0 0 0 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

1 stalls
  0 0 0 0 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

2 stalls
  0 0 0 1 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

3 jumps if positive
  0 0 0 1 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

4 shifts to the right
  0 0 1 0 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

5 stores and clears
  0 0 1 0 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

6 adds 2^-35
  0 0 1 1 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

7 stores only
  0 0 1 1 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

8 reads or stalls
  0 1 0 0 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

9 prints
  0 1 0 0 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

10 stalls
  0 1 0 1 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

11 stalls
  0 1 0 1 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

12 subtracts
  0 1 1 0 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

13 stops
  0 1 1 0 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

14 stalls
  0 1 1 1 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

15 stalls
  0 1 1 1 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

16 stalls
  1 0 0 0 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

17 checks
  1 0 0 0 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

18 stalls
  1 0 0 1 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

19 stalls
  1 0 0 1 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

20 stalls
  1 0 1 0 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

21 loads
  1 0 1 0 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

22 multiplies and subtracts
  1 0 1 1 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

23 stalls
  1 0 1 1 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

24 stalls
  1 1 0 0 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

25 shifts to the left
  1 1 0 0 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

26 adds 2^-17
  1 1 0 1 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

27 jumps if negative
  1 1 0 1 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

28 adds
  1 1 1 0 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

29 stalls
  1 1 1 0 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

30 ANDs and adds
  1 1 1 1 0                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

31 multiplies and adds
  1 1 1 1 1                        
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

Repertoire

EDSAC fetched one cell of eighteen binary digits at a time for interrogation:

                                   
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

Eighteen bits top out at 262,144 potentially distinct directives, but only five designated bits held the eighteen operation codes among the thirty-two codepoints:

                                   
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

The stop directive and the two round directives consisted of no additional information besides the opcode:

  opcode  
                                   
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

The remaining thirteen bits were ignored. Consequently, the stop directive and the two round directives each had 2^13 numerical aliases.

Such phenomena inestimably facilitated the formulation of self-modifying code which is akin to three-dimensional chess.

Furthermore, David J. Wheeler himself assigned EDSAC's seemingly arbitrary op-code values — which also came in handy (to say the least!) developing the infinitely-extensible self-modifying bootstrap!

Besides an opcode, the two fork directives also consisted of the entire nine-bit address of a cell:

  opcode   cell address  
                                   
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

In this case, the remaining four (not thirteen) bits were ignored. Consequently, each distinct fork directive only had had 2^4 numerical aliases.

GOTO

Fork directives addressed either other directives or themselves. They jumped (took the branch) or not (fell through to the next sequential cell) depending upon the accumulator register.

The dual use register had a sign bit, each rank of boot storage had a sign bit, and each cell of general storage had a sign bit, too. However, the fork directives were only conscious of the sign bit in the accumulator register. A zero-bit (one-bit) was considered positive (negative).

Fork directives were conditional, but there were ways to force an unconditional jump. Coders could fabricate a goto out of a pair of positive and negative fork directives. Coders could also force a branch by first dumping/clearing the accumulator register and then branching because the accumulator register was now known to be positive.

The very first two directives of David J. Wheeler's masterpiece do in fact first clear and then branch.

Shifting the Contents of the Accumulator Register

shifts one place to the left or to the right
  opcode    
                                  1
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts two places to the left or to the right
  opcode    
                                1 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts three places to the left or to the right
  opcode   extension
                              1 0 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts four places to the left or to the right
  opcode   extension
                            1 0 0 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts five places to the left or to the right
  opcode   extension
                          1 0 0 0 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts six places to the left or to the right
  opcode   extension
                        1 0 0 0 0 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts seven places to the left or to the right
  opcode   extension
                      1 0 0 0 0 0 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts eight places to the left or to the right
  opcode   extension
                    1 0 0 0 0 0 0 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts nine places to the left or to the right
  opcode   extension
                  1 0 0 0 0 0 0 0 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts ten places to the left or to the right
  opcode   extension
                1 0 0 0 0 0 0 0 0 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts eleven places to the left or to the right
  opcode   extension
              1 0 0 0 0 0 0 0 0 0 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts twelve places to the left or to the right
  extended opcode
            1 0 0 0 0 0 0 0 0 0 0 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts fifteen places to the right
  extended opcode
  0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

shifts thirteen places to the left
  extended opcode
  1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

The two shift directives had a total of twenty-six extended opcodes. These variations obliquely specified how many places to shift the contents of the accumulator register.

One shift directive displaced the contents of the accumulator register to the left. As a side effect, the thirteen variations of this shift directive implicitly multiplied, and, moreover, they did so independent of the dual use register.

The other shift directive displaced the contents of the accumulator register to the right. As a side effect, the thirteen variations of this shift directive implicitly divided.

Besides an opcode, the remaining odd lot of eleven directives consisted of either

  • the nine-bit address of a cell or

  • the eight-bit prefix of a pair of cells

along with a trailing indicator (see *):

  opcode   cell address *
                                  0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  opcode   pair prefix   *
                                  1
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

The remaining three or four bits, as the case may be, were ignored. Consequently, each of the distinct miscellaneous directives had either eight or sixteen numerical aliases.

The miscellaneous directives addressed data (not directives as such).

The address of an unicellular datum was odd or even. The 512 singletons consisted of a sure-enough don't-care bit, instead of a hypothetical pad bit, a sign bit, and sixteen bits of precision:

Positive sign bit

  0                                
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

Negative sign bit

  1                                
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

The address of a bicellular datum was a multiple of two, the lower address of the pair of addresses of the pair of cells. The 256 doubles consisted of a don't-care bit, a sign bit, and thirty-four bits of precision, which was approximately the format of the dual use register:

Positive sign bit

  0                                
                                   
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

Negative sign bit

  1                                
                                   
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

Place values

  • 2^- 1 = 0.5
  • 2^- 2 = 0.25
  • 2^- 3 = 0.125
  • 2^- 4 = 0.0625
  • 2^- 5 = 0.03125
  • 2^- 6 = 0.015625
  • 2^- 7 = 0.0078125
  • 2^- 8 = 0.00390625
  • 2^- 9 = 0.001953125
  • 2^-10 = 0.0009765625
  • 2^-11 = 0.00048828125
  • 2^-12 = 0.000244140625
  • 2^-13 = 0.0001220703125
  • 2^-14 = 0.00006103515625
  • 2^-15 = 0.000030517578125
  • 2^-16 = 0.0000152587890625
  • 2^-17 = 0.00000762939453125
  • 2^-18 = 0.000003814697265625
  • 2^-19 = 0.0000019073486328125
  • 2^-20 = 0.00000095367431640625
  • 2^-21 = 0.000000476837158203125
  • 2^-22 = 0.0000002384185791015625
  • 2^-23 = 0.00000011920928955078125
  • 2^-24 = 0.000000059604644775390625
  • 2^-25 = 0.0000000298023223876953125
  • 2^-26 = 0.00000001490116119384765625
  • 2^-27 = 0.000000007450580596923828125
  • 2^-28 = 0.0000000037252902984619140625
  • 2^-29 = 0.00000000186264514923095703125
  • 2^-30 = 0.000000000931322574615478515625
  • 2^-31 = 0.0000000004656612873077392578125
  • 2^-32 = 0.00000000023283064365386962890625
  • 2^-33 = 0.000000000116415321826934814453125
  • 2^-34 = 0.0000000000582076609134674072265625
  • 2^-35 = 0.00000000002910383045673370361328125
  • 2^-36 = 0.000000000014551915228366851806640625
  • 2^-37 = 0.0000000000072759576141834259033203125
  • 2^-38 = 0.00000000000363797880709171295166015625
  • 2^-39 = 0.000000000001818989403545856475830078125
  • 2^-40 = 0.0000000000009094947017729282379150390625
  • 2^-41 = 0.00000000000045474735088646411895751953125
  • 2^-42 = 0.000000000000227373675443232059478759765625
  • 2^-43 = 0.0000000000001136868377216160297393798828125
  • 2^-44 = 0.00000000000005684341886080801486968994140625
  • 2^-45 = 0.000000000000028421709430404007434844970703125
  • 2^-46 = 0.0000000000000142108547152020037174224853515625
  • 2^-47 = 0.00000000000000710542735760100185871124267578125
  • 2^-48 = 0.000000000000003552713678800500929355621337890625
  • 2^-49 = 0.0000000000000017763568394002504646778106689453125
  • 2^-50 = 0.00000000000000088817841970012523233890533447265625
  • 2^-51 = 0.000000000000000444089209850062616169452667236328125
  • 2^-52 = 0.0000000000000002220446049250313080847263336181640625
  • 2^-53 = 0.00000000000000011102230246251565404236316680908203125
  • 2^-54 = 0.000000000000000055511151231257827021181583404541015625
  • 2^-55 = 0.0000000000000000277555756156289135105907917022705078125
  • 2^-56 = 0.00000000000000001387778780781445675529539585113525390625
  • 2^-57 = 0.000000000000000006938893903907228377647697925567626953125
  • 2^-58 = 0.0000000000000000034694469519536141888238489627838134765625
  • 2^-59 = 0.00000000000000000173472347597680709441192448139190673828125
  • 2^-60 = 0.000000000000000000867361737988403547205962240695953369140625
  • 2^-61 = 0.0000000000000000004336808689942017736029811203479766845703125
  • 2^-62 = 0.00000000000000000021684043449710088680149056017398834228515625
  • 2^-63 = 0.000000000000000000108420217248550443400745280086994171142578125
  • 2^-64 = 0.0000000000000000000542101086242752217003726400434970855712890625
  • 2^-65 = 0.00000000000000000002710505431213761085018632002174854278564453125
  • 2^-66 = 0.000000000000000000013552527156068805425093160010874271392822265625
  • 2^-67 = 0.0000000000000000000067762635780344027125465800054371356964111328125
  • 2^-68 = 0.00000000000000000000338813178901720135627329000271856784820556640625
  • 2^-69 = 0.000000000000000000001694065894508600678136645001359283924102783203125
  • 2^-70 = 0.0000000000000000000008470329472543003390683225006796419620513916015625

Standing Orders

EDSAC was equipped with a tape reader and five push buttons.

STOP stopped EDSAC and once EDSAC was stopped:

  • CLEAR reset general storage and the registers except the input and output registers.
  • COPY copied the ranks of boot storage into the first cells of general storage.
  • STEP attempted to cycle once and then stopped.
  • GO began or resumed cycling.

Complementary CLEAR and COPY might have been combined into one push button. However, separating them provided the opportunity to deploy set-aside transient areas and serially phase in more data/directives than would otherwise fit simultaneously into 512 cells of general storage.

The personnel who operated EDSAC stood by to mount the next tape and press the appropriate button. myEDSAC.exe deals with keyboards and displays, but otherwise the ambiance is unchanged. I enter a subcommand to clear, copy, or go, and I press Enter to step merely once.

myEDSAC.exe stops after the designated number of steps or at the designated address. Entering a quantity causes myEDSAC.exe to attempt the specified number of further steps.

The synonymous begin, resume, finish, and go subcommands of my myEDSAC.exe — as well as the slow subcommand of myEDSAC.exe — are equivalent to entering 4,294,967,295.

EDSAC was a finite state machine as well as a sequential machine:

state status subordinate status
0 active  
1 quiescent stopped
2 stalled
3 both stopped and stalled

Before and after a push button was pressed:

state CLEAR COPY GO STEP STOP
0         1 or 3
1 3 1 or 3 0 1 or 3 1
2 3 1 or 3 2 3 3
3 3 1 or 3 2 3 3

The previous directive either (a) completed and permitted continued cycling, (b) completed and stopped, or (c) nullified and stalled.

The personnel who operated EDSAC, along with the personnel who coded EDSAC, huddled beforehand to call plays. Afterward, the printout and the pointer register informed them whether the code had fizzled, finished, or reached a milestone.

Grasping the Reins

A physical tape has zero or more blank rows up front — for the sprockets of an actual tape reader to grab. Sprockets or not, whether the tape at hand is real or virtual, each blank row is read as a sixteen, and each pair of blank rows is parsed as a mildly dysfunctional, meta expression

16 16
16 16

16 16

which happens to spoil cell 42, which is reserved for the primary reference address. An unpaired blank row does worse than that. An unpaired blank row bleeds into the first cogent expression or meta expression on the tape.

Recommendation

Either this pair of meta expressions

 0       14
 5  4  4 14

or, in effect, this pair

16  0    14
 5  4  4 14

grasp the reins, achieve synchronism, and prompt the bootstrap to start tiling cell 44 — which is reserved for the first of the (as many as a dozen) secondary reference addresses.

Beyond the Header

  1. These meta expressions

     0       14
     5  4  4 14

    should be punched verbatim and immediately after any header.

  2. Followed by expressions for the secondary reference addresses.

  3. Followed by meta expressions to set the primary reference address and ticket the first subroutine for its destination.

  4. Followed by expressions for the first subroutine.

  5. Followed by meta expressions to set the primary reference address, again, and ticket the second subroutine.

  6. Followed by expressions for the second subroutine.

  7. Followed by meta expressions to set the primary reference address, again, and ticket the third subroutine.

  8. Followed by expressions for the third subroutine.

  9. Followed by meta expressions to set the primary reference address, again, and ticket the main routine.

  10. Followed by expressions for the main routine.

  11. Followed, ultimately, by meta expressions to transfer control to the main routine.

Expressions

Ordinary expressions are obligatory for these pieces of the application program:

  • The secondary reference addresses.
  • Each subroutine.
  • The main routine.

Meta Expressions

On the other hand, somewhat extraordinary expressions are obligatory to do the following:

  • Grasp the reins, achieve synchronism, and prompt the bootstrap to start tiling cell 44.
  • Prompt the bootstrap to patch cell 42.
  • Prompt the bootstrap to ticket each routine for its destination.
  • Prompt the bootstrap to transfer control to the main routine.

Initial Conditions

Say the operator forgets to mount a tape.

C:\>myEDSAC.exe configure clear copy begin delta .. . exit
  0     5.0.0 *     0.0.0 ← don't care
 22    5.43.0 *    5.44.0 ← perched to tile cell 44
 43           *     0.0.1 ← bona fide tag
 34 Stores input register into cells 40-41. ← head of outer loop
 34 Stores input register into cells 40-41. ← stalled
C:\>

That is a snapshot of the proper set-up for the first cogent expression or meta expression.

Key cells:

  • Cell 9 is the head of the inner loop of the bootstrap. Cell 9 reads the subsequent (not the first) abstract number(s) of each expression or meta expression.

  • Cell 22 is the protagonist of the bootstrap. In most of its alternative getups, cell 22 tiles commandeered cells with data/directives.

  • Cell 34 is the head of the outer loop of the bootstrap. Cell 34 reads the first (not the subsequent) abstract number(s) of each expression or meta expression.

Say the operator mounts a blank tape with an even number of rows.

C:\>erase tape.txt
C:\>punch 16 16 16 16 16 16 ← an even number of blank rows of tape
C:\myEDSAC.exe configure clear copy mount tape begin delta .. . exit
16 16 16 16 16 16
  0     5.0.0 *     0.0.0 ← don't care
  1    3.20.0 *     0.8.0 ← don't care
 20    21.8.0 *    3.32.0 ← don't care
 22    5.43.0 *    5.44.0 ← perched to tile cell 44
 40     0.0.1 *    16.0.0 ← don't care
 42           *    5.44.0 ← spoiled?
 43           *     0.0.1 ← bona fide tag
 34 Stores input register into cells 40-41. ← head of outer loop
 34 Stores input register into cells 40-41. ← stalled
C:\>

Cell 42 is spoiled. So what? The primary reference address was not there to begin with, there is still a state of synchronism, and cell 22 is perched to start tiling cell 44.

Say the operator mounts a blank tape with an odd number of rows.

C:\>erase tape.txt
C:\>punch 16 16 16 16 16 16 16 ← an odd number of blank rows of tape
C;\myEDSAC.exe configure clear copy mount tape begin delta .. . exit
16 16 16 16 16 16 16
  0     5.0.0 *     0.0.0 ← don't care
  1    3.20.0 *     0.8.0 ← don't care
 20    21.8.0 *    3.32.0 ← don't care
 22    5.43.0 *    5.44.0 ← perched to tile cell 44
 40     0.0.1 *    16.0.0 ← don't care
 42           *    5.44.0 ← spoiled?
 43           *     0.0.1 ← bona fide tag
  9 Stores input register into cell 1. ← head of inner loop!
  9 Stores input register into cell 1. ← stalled
C:\>

All for naught — because now the bootstrap and the tape are out of synchronism.

Say someone punches the recommended meta expressions and the operator does in fact mount the tape:

C:\>erase tape.txt
C:\>punch 16 16 16 16 16 16 16 ← odd number of blank rows of tape C:\>punch  0          14 ← meta expression
C:\>punch  5     4  4 14 ← meta expression
C:\>punch 31  5  1  1 19 ← common expression for arbitrary directive
C:\>myEDSAC.exe configure clear copy mount tape begin delta .. . exit
16 16 16 16 16 16 16  0 14  5  4  4 14 31  5  1  1 19
  0     5.0.0 *   0.511.0
  1    3.20.0 *     0.9.1
 20    21.8.0 *   28.43.0
 22    5.43.0 *    5.45.0 ← yes
 40     0.0.1 *    31.0.0
 42           *   21.44.0 ← don't care
 43           *     0.0.1
 44           *  31.511.1 ← yes
 34 Stores input register into cells 40-41. ← head of outer loop
 34 Stores input register into cells 40-41. ← stalled
C:\>

The bootstrap parses a dessert course consisting of five meta expressions before getting down to the meat and potatoes:

16          16
16          16
16          16
16        0 14
 5     4  4 14
31  5  1  1 19

The recommended meta expressions are merely a cliche in the context of a virtual tape:

C:\>erase tape.txt
C:\>punch  0          14 ← meta expression
C:\>punch  5     4  4 14 ← meta expression
C:\>punch 31  5  1  1 19 ← common expression for arbitrary directive
C:\>myEDSAC.exe configure clear copy mount tape begin delta .. . exit
 0 14  5  4  4 14 31  5  1  1 19
  0     5.0.0 *   0.511.0
  1    3.20.0 *     0.9.1
 20    21.8.0 *   28.43.0
 22    5.43.0 *    5.45.0 ← yes
 40     0.0.1 *    31.0.0
 43           *     0.0.1
 44           *  31.511.1 ← yes
 34 Stores input register into cells 40-41. ← head of outer loop
 34 Stores input register into cells 40-41. ← stalled
C:\>

Notice that cell 42 is unscathed.

Ordinary Expressions

These patterns set the standard because they take the beaten path through the bootstrap:

a bbb    c
a bbb 11 c

where

 0 ≤ a ≤ 31
 0 ≤ b ≤ 10
17 ≤ c ≤ 31

and each b appears as a separate row of tape (b1 b2 b3), and there are zero or more of these.

Opcode

Suppose a is an opcode, the opcode of a directive. Data is disguised as directives, which is why the beaten path is so much trodden and so worn smooth. Regarding data, just read between the lines.

Decimal-to-Binary Conversion

This sum — 100 × b1 + 10 × b2 + b3 — is either the address of or the displacement of either a cell or a pair of cells.

Absolute Address (Relative to Cell 0)

If c is 17 or 19 then the sum is an address. If c is 17 then the address is that of a single cell. If c is 19 then the address is that of a pair of cells. If c is 17 or 19 then the bootstrap tags the directive accordingly.

This sum — c + 24 — is the address of the cell where the pertinent tag is known to be present. Cell 41 is the location of the nil tag, and cell 43 is the location of the bona fide tag. The bootstrap automatically initializes cell 41 and cell 43.

Relative Address (Relative to a Reference Address)

If c is 18 or 20-31 then the sum is a displacement, an offset, a distance measured in cells.

If c is 18 then the displacement is relative to the primary reference address. Cell 42 is reserved for that tether.

If c is 20-31 then the displacement is relative to a secondary reference address. Cells 44-55 are reserved for those tethers.

Effective Address (Relative to Cell 0)

This sum — c + 24 — is the address of the cell where the pertinent reference address is presumed to be present. The effective address is the sum of the displacement and the selected reference address.

The reference addresses are absolute addresses, and so are any effective addresses.

Tagging and Recommended Script

If the optional 11 is absent then the address or effective address is that of a single cell. In this case, in effect, the bootstrap untags the directive with the nil tag, which is present in cell 41.

If the optional 11 is present then the address or effective address is that of a pair of cells. In this case, the bootstrap actually tags the directive with the bona fide tag, which is present in cell 43.

The bootstrap does not automatically initialize cell 42 nor cells 44-55, so adapt this script.

C:\>erase tape.txt
C:\>punch  0          14 ← ignore the optional, blank header or spacer
C:\>punch  5     4  4 14 ← start tiling cell 44
C:\>punch  0  1  1  0 17 ←  1st secondary reference address
C:\>punch  0  1  2  0 17 ←  2nd secondary reference address
C:\>punch  0  1  3  0 17 ←  3rd secondary reference address
C:\>punch  0  1  4  0 17 ←  4th secondary reference address
C:\>punch  0  1  5  0 17 ←  5th secondary reference address
C:\>punch  0  1  6  0 17 ←  6th secondary reference address
C:\>punch  0  1  7  0 17 ←  7th secondary reference address
C:\>punch  0  1  8  0 17 ←  8th secondary reference address
C:\>punch  0  1  9  0 17 ←  9th secondary reference address
C:\>punch  0  2  0  0 17 ← 10th secondary reference address
C:\>punch  0  2  1  0 17 ← 11th secondary reference address
C:\>punch  0  2  2  0 17 ← 12th secondary reference address
C:\>punch 27     4  4 14 ← primary reference address!
C:\>myEDSAC.exe configure clear copy mount begin delta exit
  0     5.0.0 *    0.44.0
  1    3.20.0 *     0.7.0
 20    21.8.0 *    3.30.0
 22    5.43.0 *    5.56.0 ← 56 + 44 = 100
 40     0.0.1 *    27.0.0
 42           *   0.100.0
 43           *     0.0.1
 44           *   0.110.0
 45           *   0.120.0
 46           *   0.130.0
 47           *   0.140.0
 48           *   0.150.0
 49           *   0.160.0
 50           *   0.170.0
 51           *   0.180.0
 52           *   0.190.0
 53           *   0.200.0
 54           *   0.210.0
 55           *   0.220.0
C:\>

Snapshot with Preliminaries Out of the Way

cell production description
22 5.56.0 stores into cell 56
41 0.0.0 nil tag
42 0.100.0 primary reference address
43 0.0.1 bona fide tag
44 0.110.0 secondary reference addresses
45 0.120.0
46 0.130.0
47 0.140.0
48 0.150.0
49 0.160.0
50 0.170.0
51 0.180.0
52 0.190.0
53 0.200.0
54 0.210.0
55 0.220.0

Instantiation

Suppose

  a = 12   
bbb = 2 3 4

Therefore

a bbb    c = 12  2  3  4    c
a bbb 11 c = 12  2  3  4 11 c

Where

 17 ≤ c ≤ 31

If you punch a specimen of the recommended script followed by a specimen of the instantiated pattern then one of these productions appears in cell 56

c 12 2 3 4 c 12 2 3 4 11 c
17 12.234.0 ← subtracts cell 234 12.234.1 ← subtracts cells 234-235
18 12.334.0 ← subtracts cell 334 12.334.1 ← subtracts cells 334-335
19 12.234.1 ← subtracts cells 234-235 12.235.0 ← subtracts cell 235
20 12.344.0 ← subtracts cell 344 12.344.1 ← subtracts cells 344-345
21 12.354.0 ← subtracts cell 354 12.354.1 ← subtracts cells 354-355
22 12.364.0 ← subtracts cell 364 12.364.1 ← subtracts cells 364-365
23 12.374.0 ← subtracts cell 374 12.374.1 ← subtracts cells 374-375
24 12.384.0 ← subtracts cell 384 12.384.1 ← subtracts cells 384-385
25 12.394.0 ← subtracts cell 394 12.394.1 ← subtracts cells 394-395
26 12.404.0 ← subtracts cell 404 12.404.1 ← subtracts cells 404-405
27 12.414.0 ← subtracts cell 414 12.414.1 ← subtracts cells 414-415
28 12.424.0 ← subtracts cell 424 12.424.1 ← subtracts cells 424-425
29 12.434.0 ← subtracts cell 434 12.434.1 ← subtracts cells 434-435
30 12.444.0 ← subtracts cell 444 12.444.1 ← subtracts cells 444-445
31 12.454.0 ← subtracts cell 454 12.454.1 ← subtracts cells 454-455

and this directive — 5.57.0 — instead of this directive — 5.56.0 — appears in cell 22.

The bootstrap automatically patched cell 22.

The same productions can be interpreted as data:

c 12 2 3 4 c 12 2 3 4 11 c
17 12.234.0 ← 49,620 × 2^-16 12.234.1 ← 49,621 × 2^-16
18 12.334.0 ← 49,820 × 2^-16 12.334.1 ← 49,821 × 2^-16
19 12.234.1 ← 49,621 × 2^-16 12.235.0 ← 49,622 × 2^-16
20 12.344.0 ← 49,840 × 2^-16 12.344.1 ← 49,841 × 2^-16
21 12.354.0 ← 49,860 × 2^-16 12.354.1 ← 49,861 × 2^-16
22 12.364.0 ← 49,880 × 2^-16 12.364.1 ← 49,881 × 2^-16
23 12.374.0 ← 49,900 × 2^-16 12.374.1 ← 49,901 × 2^-16
24 12.384.0 ← 49,920 × 2^-16 12.384.1 ← 49,921 × 2^-16
25 12.394.0 ← 49,940 × 2^-16 12.394.1 ← 49,941 × 2^-16
26 12.404.0 ← 49,960 × 2^-16 12.404.1 ← 49,961 × 2^-16
27 12.414.0 ← 49,980 × 2^-16 12.414.1 ← 49,981 × 2^-16
28 12.424.0 ← 50,000 × 2^-16 12.424.1 ← 50,001 × 2^-16
29 12.434.0 ← 50,020 × 2^-16 12.434.1 ← 50,021 × 2^-16
30 12.444.0 ← 50,040 × 2^-16 12.444.1 ← 50,041 × 2^-16
31 12.454.0 ← 50,060 × 2^-16 12.454.1 ← 50,061 × 2^-16

Ordinary Expressions Go With the Grain

The bootstrap reads a range of abstract numbers (0, 1, 2, … 31) from tape and into general storage, and, along the way, parses suspected patterns.

The beaten path of the bootstrap

  • translates individual sequences of two or more abstract numbers into individual productions (0, 1, 2, … 131,072) and

  • tiles general storage with the latter.

A production may serve as a datum, as a directive, or as both.

The classic example of a hybrid is a so-called selfie, an otherwise ordinary directive that refers to itself.

The natural tendency of the bootstrap is to tile cells 44, 45, 46, … 511, one cell right after the other, with the secondary reference addresses followed by the application program, one module right after the other.

Since a typical application program has fewer than a dozen subroutines

  • at most twelve cells are required for secondary reference addresses, and

  • at a minimum 456 cells are available for the application program.

Meta Expressions Go Against the Grain

It is necessary to game the bootstrap in order to get the bootstrap to

  • ignore portions of tape that are blank,

  • set the primary reference address,

  • scatter the modules of the application program throughout general storage, and

  • ultimately transfer control to the application program.

It is necessary to fiddle the patterns in order to lead the bootstrap off the beaten path.

Less Trodden Routes

These tinkered patterns take less trodden routes through the bootstrap:

a bbb    c
a bbb 11 c

where

 0 ≤ a ≤ 31
 0 ≤ b ≤ 10
11 ≤ c ≤ 16

and each b appears as a separate row of tape (b1 b2 b3), and there are zero or more of these.

Color within the lines because hypothetical patterns amount to bushwhacking the bootstrap.

Grabbing the Reins

The recommended meta expressions are necessary with a physical tape:

C:\>erase tape.txt
C:\>punch 16 16 16 16 16 16 16 ← odd number of blank rows of tape C:\>punch  0          14 ← meta expression
C:\>punch  5     4  4 14 ← meta expression
C:\>punch 31  5  1  1 19 ←      expression for arbitrary directive
C:\>myEDSAC.exe configure clear copy mount tape begin delta .. . exit
16 16 16 16 16 16 16  0 14  5  4  4 14 31  5  1  1 19
  0     5.0.0 *   0.511.0
  1    3.20.0 *     0.9.1
 20    21.8.0 *   28.43.0
 22    5.43.0 *    5.45.0 ← yes
 40     0.0.1 *    31.0.0
 42           *   21.44.0 ← don't care
 43           *     0.0.1
 44           *  31.511.1 ← yes
 34 Stores input register into cells 40-41. ← head of outer loop
 34 Stores input register into cells 40-41. ← stalled
C:\>

The bootstrap parses these meta expressions and ultimately this expression:

16          16
16          16
16          16
16        0 14
 5     4  4 14
31  5  1  1 19

The recommended meta expressions are compatible with a virtual tape:

C:\>erase tape.txt
C:\>punch  0          14 ← meta expression
C:\>punch  5     4  4 14 ← meta expression
C:\>punch 31  5  1  1 19 ←      expression for arbitrary directive
C:\>myEDSAC.exe configure clear copy mount tape begin delta .. . exit
 0 14  5  4  4 14 31  5  1  1 19
  0     5.0.0 *   0.511.0
  1    3.20.0 *     0.9.1
 20    21.8.0 *   28.43.0
 22    5.43.0 *    5.45.0 ← yes
 40     0.0.1 *    31.0.0
 43           *     0.0.1
 44           *  31.511.1 ← yes
 34 Stores input register into cells 40-41. ← head of outer loop
 34 Stores input register into cells 40-41. ← stalled
C:\>

More to the point, the recommended meta expressions are unnecessary with a virtual tape:

C:\>erase tape.txt
C:\>punch 31  5  1  1 19 ← expression for arbitrary directive
C:\>myEDSAC.exe configure clear copy mount tape begin delta .. . exit
31  5  1  1 19
  0     5.0.0 *   0.511.0
  1    3.20.0 *     0.9.1
 20    21.8.0 *   28.43.0
 22    5.43.0 *    5.45.0 ← yes
 40     0.0.1 *    31.0.0
 43           *     0.0.1
 44           *  31.511.1 ← yes
 34 Stores input register into cells 40-41. ← head of outer loop
 34 Stores input register into cells 40-41. ← stalled
C:\>

Setting the Primary Reference Address

Definitions:
  • A22 = the address portion of the contents of cell 22 (that is, the next address)
  • A42 = the address portion of the contents of cell 42 (that is, the primary reference address)

27 13  A42 = A42 + A22

C:\>erase tape.txt
C:\>punch 27 13 ← A42 = A42 + A22
C:\>myEDSAC.exe configure clear copy mount ( general 42 0.100.0 ) begin delta exit
 42   0.100.0             ← tether in place
  0     5.0.0 *     0.0.0
  1    3.20.0 *     0.6.1
 20    21.8.0 *    3.29.0
 22    5.43.0 *    5.44.0 ← perched to tile cell 44
 40     0.0.1 *    27.0.0
 42           *   0.144.0 ← tether replaced
 43           *     0.0.1
C:\>

27 bbb 13  A42 = A42 + A22 + 0.bbb.0

C:\>erase tape.txt
C:\>punch 27  3  2 13 ← A42 = A42 + A22 + 32
C:\>myEDSAC.exe configure clear copy mount ( general 42 0.100.0 ) begin delta exit
 42   0.100.0             ← tether in place
  0     5.0.0 *    0.32.0
  1    3.20.0 *     0.6.1
 20    21.8.0 *    3.29.0
 22    5.43.0 *    5.44.0 ← perched to tile cell 44
 40     0.0.1 *    27.0.0
 42           *   0.176.0 ← tether replaced
 43           *     0.0.1
C:\>

27 14  A42 = A22

C:\>erase tape.txt
C:\>punch 27 14 ← A42 = A22
C:\>punch  5 17 ← arbitrary directive
C:\>myEDSAC.exe configure clear copy mount begin delta exit 
  0     5.0.0 *     0.0.0
  1    3.20.0 *     0.8.1
 20    21.8.0 *   28.41.0
 22    5.43.0 *    5.45.0 ← perched to tile next cell
 40     0.0.1 *     5.0.0
 42           *    0.44.0 ← tether in place
 43           *     0.0.1
 44           *     5.0.0 ← directive in place
C:\>

27 bbb 14  A42 = A22 + 0.bbb.0

C:\>erase tape.txt
C:\>punch 27  6  4 14 ← A42 = A22 + 64
C:\>myEDSAC.exe configure clear copy mount begin delta exit
  0     5.0.0 *    0.64.0
  1    3.20.0 *     0.7.0
 20    21.8.0 *    3.30.0
 22    5.43.0 *    5.44.0 ← perched to tile cell 44
 40     0.0.1 *    27.0.0
 42           *   0.108.0 ← tether in place
 43           *     0.0.1
C:\>

Ticketing the Routines

The bootstrap is predisposed to tile one consecutive cell after another, to tile the secondary reference addresses and then the application program, to tile cells 44, 45, 46, … 511.

Which is fine as long as

  • The footprint of the first subroutine abuts the secondary reference addresses.

  • The respective footprints of the subroutines abut one another, in turn.

  • The footprint of the main routine abuts the footprint of the final subroutine.

However, this aseptic scenario sketches a bundle of contiguous footprints that does not consider the larger bootprints of the routines. Each subroutine, as well as the main routine, most likely needs a bump carved out for it for use as, say, a scratchpad, parameters, or both.

Transferring Control

Along some of the paths that are not so worn smooth, the bootstrap ultimately passes a designated parameter to the cell that is located either at a designated address or at a designated displacement relative to the presumptive, primary reference address.

These pairs of a meta expression followed by an ordinary expression transfer control:

bbb1 13  0 bbb3 17
bbb1 13  0 bbb4 19
bbb2 14  0 bbb3 17
bbb2 14  0 bbb4 19

where

  • bbb1 is a displacement relative to the primary reference address

  • bbb2 is an address

  • 0.bbb3.0 is a parameter

  • 0.bbb4.1 is also a parameter

3 13  0 17

C:\>erase tape.txt
C:\>punch 27 14 ← A42 = A22
C:\>punch 13 17 ← stops
C:\>punch  3 13 ← transfers control to cell A42
C:\>punch  0 17 ← parameter
C:\>myEDSAC.exe configure clear copy mount begin delta .. . accumulator exit
  0     5.0.0 *     0.0.0
  1    3.20.0 *     0.8.1
 20    21.8.0 *   28.41.0
 22    5.43.0 *    3.44.0 ← yes
 40     0.0.1 *     0.0.0
 42           *    0.44.0 ← yes
 43           *     0.0.1
 44           *    13.0.0 ← yes
 44 Stops.  ← yes
 45 Stalls. ← as expected
000000000000000000000000  ← yes
C:\>

3 13  0 3 2 7 6 7 19

C:\>erase tape.txt
C:\>punch 27 14 ← A42 = A22
C:\>punch 13 17 ← stops
C:\>punch  3 13 ← transfers control to cell A42
C:\>punch  0 3 2 7 6 7 19 ← parameter
edsac configure clear copy mount begin delta .. . accumulator exit
  0     5.0.0 * 15.2047.0
  1    3.20.0 *     0.9.1
 20    21.8.0 *   28.43.0
 22    5.43.0 *    3.44.0 ← yes
 40     0.0.1 *     0.0.0
 42           *    0.44.0 ← yes
 43           *     0.0.1
 44           *    13.0.0 ← yes
 44 Stops.  ← yes
 45 Stalls. ← as expected
177777000000000000000000 ← parameter
C:\>

3  1 13  0 17

C:\>erase tape.txt
C:\>punch 27    14 ← A42 = A22
C:\>punch 13    17 ← stops
C:\>punch 13    17 ← stops
C:\>punch  3  1 13 ← transfers control to cell A42 + 1
C:\>punch  0    17 ← parameter
C:\>myEDSAC.exe configure clear copy mount begin delta .. . accumulator exit
  0     5.0.0 *     0.0.0
  1    3.20.0 *     0.8.1
 20    21.8.0 *   28.41.0
 22    5.43.0 *    3.45.0 ← yes
 40     0.0.1 *     0.0.0
 42           *    0.44.0 ← yes
 43           *     0.0.1
 44           *    13.0.0 ← yes
 45           *    13.0.0 ← yes
 45 Stops.  ← yes
 46 Stalls. ← as expected
000000000000000000000000 ← yes
C:\>

3  1 13  0 3 2 7 6 7 19

C:\>erase tape.txt
C:\>punch 27    14 ← A42 = A22
C:\>punch 13    17 ← stops
C:\>punch 13    17 ← stops
C:\>punch  3  1 13 ← transfers control to cell A42 + 1
C:\>punch  0  3 2 7 6 7 19 ← parameter
C:\>myEDSAC.exe configure clear copy mount begin delta .. . accumulator exit
  0     5.0.0 * 15.2047.0
  1    3.20.0 *     0.9.1
 20    21.8.0 *   28.43.0
 22    5.43.0 *    3.45.0 ← yes
 40     0.0.1 *     0.0.0
 42           *    0.44.0 ← yes
 43           *     0.0.1
 44           *    13.0.0 ← yes
 45           *    13.0.0 ← yes
 45 Stops.  ← yes
 46 Stalls. ← as expected
177777000000000000000000 ← yes
C:\>

3  4  5 14  0 17

C:\>erase tape.txt
C:\>punch 13       17 ← stops
C:\>punch 13       17 ← stops
C:\>punch  3  4  5 14 ← transfers control to cell 45
C:\>punch  0       17 ← parameter
C:\>myEDSAC.exe configure clear copy mount begin delta .. . accumulator exit
  0     5.0.0 *     0.0.0
  1    3.20.0 *     0.8.1
 20    21.8.0 *   28.41.0
 22    5.43.0 *    3.45.0 ← yes
 40     0.0.1 *     0.0.0
 43           *     0.0.1
 44           *    13.0.0 ← yes
 45           *    13.0.0 ← yes
 45 Stops.  ← yes
 46 Stalls. ← as expected
000000000000000000000000 ← yes
C:\>

3  4  5 14  0 3 2 7 6 7 19

C:\>erase tape.txt
C:\>punch 13       17 ← stops
C:\>punch 13       17 ← stops
C:\>punch  3  4  5 14 ← transfers control to cell 45
C:\>punch  0  3 2 7 6 7 19 ← parameter
C:\>edsac configure clear copy mount begin delta .. . accumulator exit
  0     5.0.0 * 15.2047.0
  1    3.20.0 *     0.9.1
 20    21.8.0 *   28.43.0
 22    5.43.0 *    3.45.0 ← yes
 40     0.0.1 *     0.0.0
 43           *     0.0.1
 44           *    13.0.0 ← yes
 45           *    13.0.0 ← yes
 45 Stops.  ← yes
 46 Stalls. ← as expected
177777000000000000000000 ← yes
C:\>

Once the bootstrap relinquishes control, its bootprint is typically fair game, because the bootstrap typically does not receive control back again. This assumes one application program per tape or set of tapes. This assumes serial processing.

Say its footprint is instead fenced off. In that event, it is feasible for the bootstrap to receive control again. But only at cell 25, which is a portal. This hypothesizes a batch of application programs per tape or set of tapes. This hypothesizes batch processing, and, in this scenario, the cells outside the fence constitute a transient area.

Ready …

C:\>myEDSAC.exe configure clear copy dot exit
  0     5.0.0  Stores into cell 0. Clears accumulator register.
  1    3.20.0  Jumps to cell 20 if positive.
  2     0.1.0
  3     7.2.0  Stores into cell 2.
  4   28.39.0  Adds cell 39.
  5     4.4.0  Shifts four places to the right.
  6    31.0.0  Multiplies dual use register by cell 0. Adds product.
  7    25.8.0  Shifts five places to the left.
  8     5.0.0  Stores into cell 0. Clears accumulator register.
  9     8.1.0  Stores input register into cell 1.
 10    28.1.0  Adds cell 1.
 11   12.39.0  Subtracts cell 39.
 12    27.4.0  Jumps to cell 4 if negative.
 13    25.0.1  Shifts one place to the left.
 14   12.39.0  Subtracts cell 39.
 15    3.17.0  Jumps to cell 17 if positive.
 16    12.7.0  Subtracts cell 7.
 17   28.35.0  Adds cell 35.
 18    5.20.0  Stores into cell 20. Clears accumulator register.
 19    28.0.0  Adds cell 0.
 20    21.8.0  Loads cell 8 into dual use register.
 21   28.40.0  Adds cell 40.
 22    5.43.0  Stores into cell 43. Clears accumulator register.
 23   28.22.0  Adds cell 22.
 24    28.2.0  Adds cell 2.
 25    5.22.0  Stores into cell 22. Clears accumulator register.
 26    3.34.0  Jumps to cell 34 if positive.
 27   28.43.0  Adds cell 43.
 28     3.8.0  Jumps to cell 8 if positive.
 29   28.42.0  Adds cell 42.
 30   28.40.0  Adds cell 40.
 31    3.25.0  Jumps to cell 25 if positive.
 32   28.22.0  Adds cell 22.
 33    5.42.0  Stores into cell 42. Clears accumulator register.
 34    8.40.1  Stores input register into cells 40-41.
 35   28.40.1  Adds cells 40-41.
 36 25.1024.0  Shifts twelve places to the left.
 37    5.40.0  Stores into cell 40. Clears accumulator register.
 38     3.8.0  Jumps to cell 8 if positive.
 39     0.5.1
 40     0.0.1
C:\>

Set …

C:\>myEDSAC.exe configure clear copy begin dot exit
  0     0.0.0
  1    3.20.0  Jumps to cell 20 if positive.
  2     0.1.0
  3     7.2.0  Stores into cell 2.
  4   28.39.0  Adds cell 39.
  5     4.4.0  Shifts four places to the right.
  6    31.0.0  Multiplies dual use register by cell 0. Adds product.
  7    25.8.0  Shifts five places to the left.
  8     5.0.0  Stores into cell 0. Clears accumulator register.
  9     8.1.0  Stores input register into cell 1.
 10    28.1.0  Adds cell 1.
 11   12.39.0  Subtracts cell 39.
 12    27.4.0  Jumps to cell 4 if negative.
 13    25.0.1  Shifts one place to the left.
 14   12.39.0  Subtracts cell 39.
 15    3.17.0  Jumps to cell 17 if positive.
 16    12.7.0  Subtracts cell 7.
 17   28.35.0  Adds cell 35.
 18    5.20.0  Stores into cell 20. Clears accumulator register.
 19    28.0.0  Adds cell 0.
 20    21.8.0  Loads cell 8 into dual use register.
 21   28.40.0  Adds cell 40.
 22    5.44.0  Stores into cell 44. Clears accumulator register.
 23   28.22.0  Adds cell 22.
 24    28.2.0  Adds cell 2.
 25    5.22.0  Stores into cell 22. Clears accumulator register.
 26    3.34.0  Jumps to cell 34 if positive.
 27   28.43.0  Adds cell 43.
 28     3.8.0  Jumps to cell 8 if positive.
 29   28.42.0  Adds cell 42.
 30   28.40.0  Adds cell 40.
 31    3.25.0  Jumps to cell 25 if positive.
 32   28.22.0  Adds cell 22.
 33    5.42.0  Stores into cell 42. Clears accumulator register.
 34    8.40.1  Stores input register into cells 40-41.
 35   28.40.1  Adds cells 40-41.
 36 25.1024.0  Shifts twelve places to the left.
 37    5.40.0  Stores into cell 40. Clears accumulator register.
 38     3.8.0  Jumps to cell 8 if positive.
 39     0.5.1
 40     0.0.1
 41     0.0.0
 42     0.0.0
 43     0.0.1
C:\>